
Efficient Congestion-Aware Scheme for Wireless On-Chip Networks
Amin Rezaei

University of Louisiana
at Lafayette, USA

(me@aminrezaei.com)

Masoud Daneshtalab
KTH Royal Institute of
Technology, Sweden

(masdan@kth.se)

Maurizio Palesi
Kore University,

Italy
(maurizio.palesi@unikore.it)

Danella Zhao
 University of Louisiana

at Lafayette, USA
(dzhao@cacs.louisiana.edu)

Abstract— Wireless NoC is becoming popular to be a promising
future on-chip interconnection network as a result of high
bandwidth, low latency and flexible topology configurations
provided by this emerging technology. Nonetheless, congestion
occurrence in wireless routers negatively affects the usability of
high speed wireless links and considerably increases the network
latency; therefore, in this paper, a congestion-aware platform
(CAP-W) is introduced for wireless NoCs in order to reduce both
internal and external congestions. The whole platform of CAP-W
consists of an adaptive routing algorithm that balances utilization
of wired and wireless networks, a dynamic task mapping approach
that tries to minimize congestion probability, and a task migration
strategy that considers dynamic variation of application behaviors.
Simulation results show significant gain in congestion control over
PEs of wireless NoC, compared to state-of-the-art works.

Keywords—Network-on-Chip; Wireless Network-on-Chip;
Congestion; Dynamic Application Mapping; Adaptive Routing
Algorithm; Task Migration

I. INTRODUCTION

Based on the report of International Technology Roadmap for
Semiconductors (ITRS) [1], Many-Core Systems-on-Chips
(MCSoCs) may integrate hundreds of Processor Elements (PEs)
connected based on a Network-on-chip (NoC) [2]
communication infrastructure. NoC provides a regular platform
for connecting system resources and makes the communication
scalable and flexible compared to traditional bus or hierarchical
bus architectures. Despite the fact that NoC-based architectures
have a lot of advantages, their multi-hop nature has a negative
impact on latency and power consumption especially as the
network size increases; therefore, alternative technologies such as
wireless NoC, 3D NoC, and photonic NoC were introduced [3-5].

Wireless NoC is becoming popular to be a promising future
on-chip interconnection network as a result of high bandwidth,
low latency and flexible topology configurations provided by this
emerging technology. However, two major shortcomings of
wireless NoC are extensive area and power overheads that
wireless transceivers impose to the system. Thus, instead of a
single NoC spanning the entire system, as is traditional, a hybrid
wireless NoC is proposed using both wired and wireless links [6].
Furthermore, a Hierarchical Wireless NoC Architecture (HiWA)
along with performance evaluation parameters is introduced
where the network is divided into subnets [7]. Intra-subnet nodes
communicate through wire links while inter-subnet
communications are almost handled by single-hop wireless links.
Also, a Wireless Router (i.e., a router equipped with a wireless
interface, WR) placement is proposed for HiWA to allocate
optimal number of WRs across the network [8].

NoC-based many-core systems face an extremely dynamic
workload where applications, as sets of communicating tasks,
map to the many-core system at run-time. The overall
performance of the NoC is highly correlated to the network
congestion [9]. Congestion not only increases the network

latency severely [10] but also raises the network power
consumption significantly [11]. Since each WR is shared by a
cluster of processing elements, WRs are more vulnerable to
congestion than Conventional Routers (CRs); therefore, in this
paper, a Congestion-Aware Platform for Wireless NoC (CAP-W)
is introduced to reduce system congestion. Experimental results
show that CAP-W can reduce both internal and external
congestions significantly. Furthermore, more than 80% of the
packets are delivered by one-hop distance using CAP-W scheme.
In addition, CAP-W also increases system utilization about 20%
compared to the conventional NoC.

The rest of the paper is organized as follows. Section II
reviews backgrounds and motivations. In section III an adaptive
routing for HiWA is introduced. An efficient dynamic
application mapping for HiWA is proposed in section IV. Section
V presents a task migration strategy for HiWA while the results
are discussed in section VI and finally, the conclusions are given
in the last section.

II. BACKGROUNDS AND MOTIVATIONS

Recent growth in silicon integrated circuit technology has
permitted the integration of tiny transceivers antennas on a single
chip, which results in introducing wireless NoC. A low Terahertz
(324GHz) frequency generator is realized in 90nm CMOS [12].
Moreover a signal source operating near 410GHz that is
fabricated using low-leakage transistors in a 6M 45nm digital
CMOS technology is reported [13]. Based on these techniques,
the output power level of the on-chip millimeter-wave generator
is expected to be as high as -1.4dBm in the 32nm CMOS process,
which is large enough for on-chip short distance communication
[14]. Following the rule of thumb in RF design, the maximum
available bandwidth is 10% of the carrier frequency. According
to this experimental estimation, up to 16 channels can be
available for wireless NoC in the range of 100 to 500GHz. With
recent developments of millimeter-wave circuits, bandwidths of
hundred GHz can be reachable. In addition to the bandwidth,
wireless NoC requires low-power on-chip wireless transceivers.
Silicon Mach-Zehnder electro-optic modulator at data rates up to
10Gb/s with low RF power consumption of only 5pJ/bit [15] is
commercially available.

Since each WR is shared by many PEs, an efficient task
allocation technique is required to balance the utilization of WRs
and reduce congestion. However, as task allocation is known as
NP-hard problem, different heuristics dealing with dynamic
management of workload in multi-core systems, such as Nearest
Neighbor (NN) and Best Neighbor (BN) are presented [16], [17].
In these heuristics, a clustering mechanism for the first node
selection is considered. A set of cluster nodes are assumed to
select the first node of the mapping algorithm among them. In
another approach called Incremental Approach (INC) [18], the
mapping problem is break down into two steps: the region
selection, and the task allocation. In the region selection step, it
starts from the closest node to the Central Manager (CM) and

2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

978-1-4673-8776-7/16 $31.00 © 2016 IEEE

DOI 10.1109/PDP.2016.88

742

2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

978-1-4673-8776-7/16 $31.00 © 2016 IEEE

DOI 10.1109/PDP.2016.88

742

include it in the region. Then, it iteratively adds nodes to the
selected region trying to keep both the selected region and the
remaining nodes contiguous. Afterward, in the task allocation
step, application tasks are mapped inside the selected region. As
an advanced approach, CoNA [19] selects the closest node to the
CM with all its neighbors available. Thus a minimum number of
available nodes are assured. Then, Task Graph (TG) is traversed
in breath-first order and tasks are mapped onto the neighboring of
their parents in which a smaller square is formed. Moreover, in
[20] a Smart Hill Climbing (SHiC) algorithm is introduced. SHiC
uses a square factor (SF) model to approximate the contiguous
available nodes around a given node. However, previous papers,
which have been mentioned above, proposed task mapping
algorithms for conventional NoCs and they did not cover
specified congestion-aware task mapping for wireless NoCs. In
[21] a Dynamic Application Mapping Algorithm (DAMA) is
presented and evaluated for wireless NoCs that is adapted in
CAP-W as application mapping scheme.

 Due to significant vibration of application behaviors, even
optimal congestion-aware task mapping may not meet the best
performance, which makes some re-mapping strategies take
behavior variation into consideration. Task migration has been
traditionally studied in distributed systems for dynamic load
balancing. However, with the increasing popularity of MCSoCs
in modern embedded systems, task migration has also gained
research attention in this domain. By efficiently trace dynamic
variation of workload specifications, task migration can improve
overall performance of the system. In [22] a lightweight
migration mechanism for bus-based MPSoC is presented. The
task migration method relies on modification of program to
define the checkpoints. When running to a checkpoint, the
program checks whether there is a migration request for the
current task. The authors in [23] proposed a methodology based
on virtual channels to create connections that provide low latency
and low power paths for the task migration flows. They adopted a
2D-mesh NoC, creating sub-meshes which may contain one or
more cores. However, the proposed task migration strategies are
for conventional NoCs and not considering wireless NoCs which
our paper is targeted.

On top of the application mapping and migration schemes,
adaptive routing algorithm can also alleviate the network
congestion. Therefore, we also apply an adaptive routing
algorithm in order to reduce congestion on WRs.

 (a) (b)
Fig. 1. Illustration of HiWA architecute (light-colored nodes are CRs and high-

colored nodes are WRs) (a) 225-node HiWA (b) 256-node HiWA

The backbone of HiWA is based on 2D mesh NoC.
Whenever it is necessary, one of the Conventional Routers (CRs)

is replaced by a Wireless Router (WR). A WR can wirelessly
communicate with the other WRs in other subnets. In addition, a
WR can perform wired communications like a CR. Fig. 1a shows
a 225-node HiWA which is divided into 9 subnets of 5×5 nodes.
Fig. 1b shows a 256-node HiWA which is divided into 16
subnets of 4×4 nodes. Since our focus is on congestion control,
finding the optimal subnet size and the placement of WRs [8] are
out of the scope of this paper.

III. ADAPTIVE ROUTING ALGORITHM FOR CAP-W
In HiWA, the communication is handled by wired, wireless

paths or a combination of wired and wireless paths. This can be
seen as a hybrid network that has been characterized by adding
express paths (i.e. wireless links) to a 2D mesh NoC; therefore,
whether the packet will take or not take the express paths is an
important decision to make. One of the benefits of partitioning is
that intra-subnet communications are handled through wire paths
while for inter-subnets communications a function of hop counts
and congestion is used in order to select the efficient path.

FLOWCHART I. CAP-W ROUTING APPROACH

s and d are in
the same
subnet

Start

Route packets from
s to d using wired

links
Hw + δ < HB

Route packets from
s to WRs using wired

links

Route packets from
WRs to WRd using

wireless links

Route packets from
WRd to d using

wired links
End

s: source node
d: destination node
WRs: source nearest wireless
router
WRd: destination nearest wireless
router
HB: travelling distance between s
and d without using wireless links
Hw: travelling distance between s
and d using both wireless and
wired links

Input: Incoming packet and buffer
usage of local wireless routers

Output: Routing path

Yes

No

No Yes

Flowchart I represents CAP-W routing flowchart. Since each
WR is shared by several nodes, there is a possibility of
congestion over WRs. In order to balance the utilization of wired
and wireless interconnections, a balance parameter called δ is
added to the routing decision. The value of δ depends on the
network size and the utilization of wireless interconnection.

 δ = � × � (1)
 As it is shown in Equation 1, δ consists of two major

parameters, the static parameter (�) defined as the ratio of WRs
to CRs and a dynamic parameter (�) that exponentially increases
by wireless link utilization. In general, the larger the network size
or the higher the link utilization is, the larger the δ. In each
router, there is a table stores and updates the δ value based on
different situations. Once δ increases, lower priority will be given
to wireless links which can help alleviating the congestion in the
wireless network. The Equation 1 is based on the WRs
utilization. Other metrics such as power consumption and
thermal analysis can also be taken into consideration. One of the
principal subjects should be addressed in networks using
wormhole switching is the deadlock avoidance. Although using
the Dimension Order Routing (DOR) in each of wired and
wireless networks guarantees deadlock freedom, when packets

743743

transmit through both wired and wireless paths, there is a
possibility of channel dependency as shown in Fig. 2a. In order to
overcome the problem, virtual channels are taken into account. In
each input port of the routers two sets of virtual channels are used
(Fig. 2b). One of them is for traffic transmission using nearest
wireless router while the other one is utilized for either the wired
network or traffic transmission of the wireless router to the
destination node.

C3

C0C2

C1

P1

P2

P1

P4

P3 P2P4 P3

WR WR

CRCR

C2

C3

C0

C1
Wireless
Network

Wired
Network

P1

P2

P1

P4

P3 P2P4 P3

WR WR

CRCR

C2

C3

C01

C11
Wireless
Network

Wired
Network

C00

C10

C3

C01

C11

C2

C10

C00

 (a) (b)

Fig. 2. A deadlock prone situation in CAP-W routing approach (a) Without
using virtual channels (b) By using virtual channels

IV. DYNAMIC TASK MAPPING APPROACH FOR CAP-W
Congestion has a negative effect on the network performance

and greatly increases the network latency. There are many works
have tried to reduce the network congestion in different aspects,
like routing as we discussed in section III. In the absence of an
efficient mapping approach, the utilization of WRs will increase
considerably where adaptive routing cannot fully prevent
network performance degradation. In high traffic workloads
adaptive routing may not use WRs, as δ increases. This leads to
increase the network latency. Thus, an efficient application
mapping approach is essential in wireless NoCs to reduce
congestion over WRs.

Two types of congestion can be considered from dynamic
application mapping perspective: external and internal
congestions. External congestion happens when a network
channel is contented by edges of different applications. To
decrease external congestion probability, the application mapped
region should be as compact as possible and minimally
fragmented. On the other hand, the internal congestion happens
when a network channel is contended by edges of the same
application. A directed graph, named as Task Graph (TG),
represents each application in the system. Each vertex represents
one task of the application, while each edge stands for a
communication between the source task and the destination task
as shown in Equation 2. TG of an application with 6 tasks is
shown in Fig. 3. The amount of data transferred from the source
task to the destination task is written on the edge.

∀�� ∈ 	, ∀
�,� ∈ �, � = 	�(, �) (2)
CAP-W task mapping approach consists of three steps [21].

The first step is to select the first node to map. The second step is
picking up the first task of the application with the largest
number of edges to be mapped onto the first node, which reduces

internal congestion probability. After all, in order to reduce the
external congestion establishing a contiguous area of available
nodes around the first node to map the rest of the tasks of the
application is taking into account. In the following we present
each step separately.

T0

T2T1

T4T3

T5

4

7

9

8

4

5

10

Fig. 3. Task graph of an application with 6 tasks and 7 edges

0 1 2 3 4 5 6 7 8

1

4

3

2

6

5

8

7

0

App1 App2

App3 App4

 (a)

0 1 2 3 4 5 6 7 8

1

4

3

2

6

5

8

7

0

App1 App2

App3 App4

App5

App5

(b)

Fig. 4. CAP-W square factor calculation

A. First Node Selection
The most contiguous area is almost circular [18]. However,

because adjacent regions share network links, choosing a circular
region for an application in the mesh network increases the
external congestion. As an alternative, when tasks are mapped
onto a rectangular region of a network with minimal routing, all
packets will be routed inside the region border and there will be
no external congestion. The most contiguous rectangle is the

744744

square, and thus it is preferred in CAP-W. The Square Factor
(SF) of a node is the estimated number of contiguous, almost
square-shaped, available nodes around the first node.
Accordingly, the suitable first node for mapping of an application
would be the node with the SF equal to the application size [20].

Each running application in the system is modeled as a
rectangle characterized by its corner nodes. Regarding the
rectangle model of a running application, there might be some
nodes within the rectangle which do not belong to the
application. In this work, the rectangle of each application is
modeled in such a way that minimizing the number of these
nodes while trying to keep the model almost in the square-
shaped. The rectangle models of four running applications are
shown in Fig. 4a. For instance, the rectangle of the application 1
has two nodes which do not belong to it (i.e. n1,2 and n0,2). Also
the rectangle of the application 3 includes one node (i.e. n6,1)
which is not a part of the application. However, they are the best
fitting rectangles in order to stay close to square-shaped.

FLOWCHART II. CAP-W FIRST NODE SELECTION

 Any untested
 free node?

Start

[(SF(n) < |T| AND SF(c) > SF(n)]
OR

[SF(c) >= |T| AND SF(c) < SF(n)]

n: choose cc: choose the next
nearest node to CM

EndYes

n
No

Yes

No

Input: Current set of applications,
size of the requested application
Output: The first node for mapping
the requested application

|T|: size of the requested application
n: nearest free node to the CM
c: next nearest free node to the CM

To calculate the SF for each node:

� First, the largest square centered on the node is found, where
it fits within the mesh limits and has no overlap with other
running applications of the system. This is shown in Fig. 4b
for the node n7,3 which is the first node of the application 5.

� Second, there might be also some more nodes beyond the
square borders not belonging to system rectangles, as
marked with triangle in Fig. 4b. These nodes have one-hop
distance to one of the nodes within the square border. They
are counted in order to prevent available nodes from being
isolated while keeping the mapped area close to a square
shape.

� Finally, The SF of a given node is calculated by adding the
nodes in the area of the largest square, with the available
nodes beyond the square borders. For instance, the SF for
n7,3 will be the square area nodes, 9, summed up with marked
nodes, 5, which is 14. As shown in Fig. 4b, two WRs (i.e.
n4,7 and n1,1) are also counted in SF factor of n7,3 because
they have one-hop distance to the node n7,4 that is inside the
square border of the application.

The first node selection algorithm of CAP-W starts from the
nearest free node to CM and walks through the network to find
the appropriate first node. It first looks for the node with the
smallest SF value which is larger than or equal to the application
size. Otherwise, the node with the largest SF value is preferred.
Note that, when there are two nodes with equal SF, the closest
one to CM is preferred to decrease the incurred defragmentation
of remaining nodes. Also, in order to reduce congestion over
WRs, they are not chosen as first node of the application by
CAP-W first node selection. The two candidates for the first node
of the application 5 are shown in Fig. 4b. The CAP-W first node
selection will choose the node n7,3 because the SF factor of this
node is 14 which is smaller than the node n1,6 with SF factor of
15. Existing WRs, which have express paths to other WRs, will
help the application to be mapped as contiguous as possible. In
fact, WRs play the role of spreading contiguity across the whole
system. Flowchart II shows CAP-W first node selection.

B. First Task to Map
The task with the largest number of edges is selected to be

mapped onto the first node. This provides the largest possible
number of available nodes around the first task; therefore, the
edges of the first task can mostly be controlled by one-hop links,
which reduces the congestion probability for the first task. If
there is more than one task having the largest number of edges,
then the first task would be the one with the most intensive
communication. For example, in Fig. 3, both tasks t2 and t3 have
3 edges. Accordingly, since the total communication weight of t3
is more than that of t2 (i.e. 26 vs. 23), t3 is selected as the first
task to be mapped. Flowchart III demonstrates CAP-W first task
selection.

FLOWCHART III. CAP-W FIRST TASK SELECTION

 Any untested
task?

Start

|e(c)| > |e(t)|t: choose c

EndYes

tNo

Yes

Input: Task graph of an application
Output: The first task for mapping
to the system

t: task t0 of the task graph
c: next task of the task graph

|e(c)| = |e(t)|
AND

W(c) > W(t)

No

No

Yes

C. Neighborhood Allocation
After the first task is mapped onto the first node, the task

mapping approach of CAP-W assumes the TG to be undirected
and traverses tasks through their predecessor tasks in the breadth-
first order, starting from the first task. Considering the set of
available nodes in the closest neighborhood of the predecessor
task, tasks are mapped onto the nodes which fit into the smallest
square with the first node.

745745

×

0 1 2 3 4 5 6 7 8

1

4

3

2

6

5

8

7

0

App1 App2

App3 App4

(a)

× ×

0 1 2 3 4 5 6 7 8

1

4

3

2

6

5

8

7

0

App1 App2

App3 App4

 (b)

Fig. 5. CAP-W neighborhood allocation

FLOWCHART IV. CAP-W TASK MAPPING APPROACH

 Any unmapped
task?

Start

t: choose next task
from the task graph in

breadth-first order

End

Yes

No

Input: Task graph of an application,
the first node to map, and the first
task to be mapped
Output: Mapped tasks to the system

tf: first task to be mapped
nf: first node to map
t: the current task to be mapped
n: the current node to map

Map tf to nf

n: choose randomly
from the set of free

nodes which best fit to
the smallest square

Map t to n

For example, considering the application 5 in Fig. 4b, after
mapping the first task to the first node (i.e. n7,3) the second node
will be randomly chosen from one of the nodes of the set
A={n6,3,n7,2, n7,4,n8,3}. Then supposing that n8,3 is chosen from A,
the new set for choosing the third node will be B={n7,2, n8,2, n7,4,
n8,4}. The demonstration is illustrated in Fig. 5. As a result, CAP-
W task mapping approach maps the communicating tasks onto

the closest neighborhood, while keeping the mapped area as close
to square as possible. CAP-W task mapping approach is shown in
Flowchart IV.

V. TASK MIGRATION STRATEGY FOR CAP-W
Due to dynamic variation of application behavior, even

optimal congestion-aware mapping may not meet the best
performance. Thus, a re-mapping strategy is required in order to
consider such variations. Task migration is a dynamic task re-
mapping mechanism, which traces dynamic variation of
workload behavior. Task migration in a many-core system is
defined as transferring a task from the core where it is currently
running to another core and then resuming its execution there in
such a way that some of system performance objectives are
improved.

0 1 2 3 4 5 6 7 8

1

4

3

2

6

5

8

7

0

App1 App2

App3 App4

App6

App5

App7 App8 App9

Appp66

(a)

0 1 2 3 4 5 6 7 8

1

4

3

2

6

5

8

7

0

App1 App2

App3 App4

App10

App7 App8 App9

App6AAAppppppp6

(b)

Fig. 6. CAP-W task migration

As depicted in Fig. 6a, suppose 9 applications are running in
the system. After a while, application 5 finishes the execution
and application 10 with 8 tasks requests to enter the system.
Although there are some idle core the new application can be
assigned to, assigning tasks of a single application in non-
adjacent cores is not aligned with the contiguous mapping
approach. In this condition, mapping application 10 onto the
system increases external congestion probability. To solve this
problem, CAP-W exploits an agile task migration. As shown in
Fig. 6b, migrating application 6 in the previous place of

746746

application 5 provides enough contiguous region for application
10. Flowchart V shows CAP-W task migration scheme which
starts only if there is not enough available cores for the incoming
application to be fitted into a rectangle. It checks running
applications starting from the farthest application to CM to find a
better mapping for them. In the case of finding a better mapping
area, the current application is transferred and dynamically
remapped to the new place using the shortest path with the
highest priority between the current and destination cores of each
task. If the source and destination are not close to each other, the
task migration usually uses wireless paths in order to expedite the
task migration process. The task migration algorithm continues
until enough contiguous cores are found for the requested
application or as long as all the running applications are tested.

FLOWCHART V. CAP-W TASK MIGRATION SCHEME

|T| > any
available rectangle

OR
Any untested

 running application?

Start

FirstNode(A)
differs from FN

then

EndYes

Input: Running applications in the system, size of requested
application, and task graph of requested application
Output: Re-mapped running applications to the system

|T|: size of the requested application
A: farthest running application to the CM
FN: current first node of application A

No

TaskMapping(A,
FirstNode(A),
FirstTask(A))

A: the next farthest
application to the CM

FN: current first node
of application A

VI. EXPERIMENTAL RESULTS

In this section, we assess the impact of CAP-W platform on
improving the mapping results. Several set of applications with 4
to 35 tasks are generated using TGG [24] where the amount of
data transferred from the source task to the destination task are
randomly distributed between 4 to 16 flits of data. Also to
measure the effectiveness of the CAP-W routing algorithm, some
application benchmark suites selected from SPLASH-2 [25] are
used. Experiments are performed using XMulator [26] an
integrated simulation platform for interconnection networks.
Different mapping and first node selection methods are evaluated
over the network size varying from 8×8 to 16×16 nodes. A
random sequence of applications is entered into the scheduler
FIFO according to the desired rate, λ. The sequence is kept fixed
in all experiments for the sake of fair comparison. Applications
are scheduled based on the First Come First Serve (FCFS) policy
and the maximum possible scheduling rate is called λfull. An
allocation request for the scheduled application is sent to the CM
of the platform residing in the node n0,0. In order to have a
holistic view of the results and enable real case comparisons,
each set of experiments are performed over ten million cycles
where hundreds of applications enter and leave the system.

A. Evaluation Metrics
AMD: Cost of a packet delivery is related to the number of

hops it traverses. Hence, a metric to evaluate a mapping is the

Average Manhattan Distance (AMD) between tasks of the
mapped application. Since the communicating nodes are placed
close to each other, the smaller the value of AMD is, the lower
the average packet latency.

�����(�) = ∑ ��(���(��), �������)∀ ��,�∈�
|�| (3)

AWMD: The packet delivery cost depends not only on the
length of its path, but also on the size of the packet. Thus, a more
precise evaluation is to also include the weight of edges. Average
Weighted Manhattan Distance (AWMD) is the sum product of
Manhattan Distance (MD) and all edges’ weight of the mapped
application, averaged by the total communication weights.

������(�) = ∑ ��,� × ��(���(��), �������)∀ ��,�∈�
∑ ��,�

 (4)

MRD: To assess how contiguous the mapped region of an
application is, Mapped Region Dispersion (MRD) factor is
defined that is the mean value of all possible node pairs MD in
the mapped region:

�!����(�) = ∑ ��(���(��), �������)∀ "�, "�∈#

$|	|
2 %

 (5)

NMRD: To decrease external congestion probability, the
application mapped region should be as compact as possible and
minimally fragmented. As it is mentioned before, the most
contiguous area, which has also the smallest MRD, is almost
circular. Regarding the mesh topology of the network, however, a
circular region will generate irregularity in remaining available
nodes and more area fragmentation in long term. On the other
hand, a rectangular allocation forms regular regions, decreases
applications overlap and thus isolates their communications.
Thus, the best mapped area would be square as it is the rectangle
with the smallest MRD. It can be shown that the MRD of a
square with |T| nodes will be:

�!�&'(|#|) = 2 × *|	|
3 (6)

Therefore, the Normalized Mapped Region Dispersion
(NMRD) metric is defined which assesses the squareness of the
mapped region independent of the size of the application. NMRD
increases as the mapped area is getting more fragmented and less
similar to a square shape:

+�!����(�) = 1 + .�!����(�) − �!�&'(|#|).
.�!�&'(|#|). (7)

On the other hand, the internal congestion occurs when a
network channel is contended by edges of the same application.
Internal Congestion Ratio (ICR) is the number of edges of an
application using the same communication channel (according to
the XY algorithm) with respect to its total number of edges (|E|).
Of note, we do not count overlapped edges that are originated
from the same source. In such case, their injection is limited by
source injection rate limit and they will never contend.

B. Latency Evaluation
The packet latency and values of different evaluation are

summarized in Table I. Evaluation metrics are normalized to the

747747

CAP-W results to ease comparison. The mapping results for
applications with different packet sizes are the same, because the
application TG and system behavior remain the same. The
application injection rate is 2/3 λfull. As can be seen, CAP-W
outperforms the BN algorithm by 40% and 20% reduction in
external and internal congestion factors, respectively. It, also,
obtains 50% gain over the INC in internal congestion and more
than 15% in external congestion. In addition, CAP-W achieves
25% gain in average for all evaluation aspects in comparison
with the NN algorithm.

TABLE I. LATENCY EVALUATION FOR DIFFERENT MAPPING
ALGORITHMS

NN [16] BN [17] INC [18] CAP-W
AMD 1.25 1.30 1.42 1.00

AWMD 1.29 1.32 1.36 1.00
NMRD 1.24 1.62 1.21 1.00

ICR 1.52 1.21 2.01 1.00

Fig. 7. Percentage of delivered packets in different path lengths

Fig. 8. (a) Hop count comparison (b) Latency comparision

As shown in [18], decreasing MD between tasks of
application edges is an effective way to minimize the
communication energy consumption of the application. We
illustrate the percentage of packets that are delivered over
different path lengths (i.e. MD). The experiments have been run

for different algorithms in the injection rate of 2/3λfull. As
depicted in Fig. 7, more than 80% of the packets are delivered by
one-hop distance using CAP-W scheme.

In addition, Fig. 8 shows the average hop counts and the
average packet latency among the baseline NoC without any WR
integration, HiWA using the XY routing and DAMA mapping,
and HiWA equipped with CAP-W. As it can be seen, although
HiWA with XY and DAMA outperforms the HiWA using CAP-
W in average hop counts, it suffers from network latency caused
by congestion in WRs.

C. Time Complexity Evaluation
The average number of clock cycles that is elapsed in CM to

map applications with number of tasks varying from 4 to 10 is
presented in Fig. 9a. The injected rate is set to 0.75 λfull.
Furthermore, the time complexity of different mapping for 8-task
applications is presented in Fig. 9b, when the injection rate varies
from 0.4 λfull to λfull. As can be seen, CAP-W provides a
reasonable time complexity next to NN. As it is shown in Fig. 9b,
all mapping algorithms scale well when the injection rate is
increased.

Fig. 9. Time complexity of mapping algorithms (a) over application sizes (b)
over different injection rates

Furthermore, Table II shows the average number of clock
cycles required for all the task migrations taken place in each
injection rate. From Fig. 9b and Table II, the overhead time of
task migration is negligible compared to mapping time
complexity (i.e. about 0.1x in the worst case scenario).

D. System Utilization Measurement
System utilization is another important factor has been

analyzed among the baseline NoC, HiWA with XY and DAMA,
and HiWA with CAP-W. As shown in Fig. 10, HiWA equipped

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6

Pe
rc

en
ta

ge
 o

f D
el

iv
er

ed
 P

ac
ke

ts

Manhattan Distance

NN BN INC CAP-W

0

2

4

6

8

10

12

FFT LU Ocean Radix Barnes Water-Spatial

A
ve

ra
ge

 H
op

 C
ou

nt

Baseline NoC HiWA (XY+DAMA) HiWA (CAP-W)

(a)

0

0.2

0.4

0.6

0.8

1

FFT LU Ocean Radix Barnes Water-Spatial

N
or

m
al

iz
ed

 L
at

en
cy

Baseline NoC HiWA (XY+DAMA) HiWA (CAP-W)

(b)

0

5000

10000

15000

20000

25000

4 5 6 7 8 9 10

NN
BN
INC
CAP-W

Number of Tasks

N
um

be
r

of
 C

lo
ck

 C
yc

le
s

(a)

0

5000

10000

15000

20000

25000

0.4 0.5 0.6 0.7 0.8 0.9 1

NN
BN
INC
CAP-W

Injection Rate (× λfull)

N
um

be
r

of
 C

lo
ck

 C
yc

le
s

(b)

748748

with CAP-W increases the average system utilization compared
to the baseline NoC and HiWA with XY and DAMA. In
addition, the maximum system utilization is defined as the
highest percentage of the utilization during the simulation time
shown in Fig. 10. HiWA equipped with CAP-W also increases
the maximum utilization compared to the others. As can be
noticed, the proposed platform cannot reach 100% utilization
because area fragmentation usually occurs due to the dynamic
mapping policy (i.e. when applications do not exactly fit onto the
many-core system).

TABLE II. TIME COMPLEXITY OF TASK MIGRATION

λ (×λfull) 0.4 0.5 0.6 0.7 0.8 0.9 1
Number of

Clock Cycles 30 132 383 536 680 840 1080

Fig. 10. System utilization

VII. CONCLUSION

In this paper, we proposed an efficient congestion-aware
platform, CAP-W, for wireless NoC. CAP-W targets at reducing
internal and external congestions, and consists of three main
parts. First an adaptive routing algorithm that balances utilization
of wired and wireless networks, second a dynamic task mapping
approach that tries to minimize congestion probability, and third
a task migration strategy that considers dynamic variation of
application behaviors. Existing WRs, which have express paths
to other WRs, help the system area to stay as contiguous as
possible. In fact, WRs play the role of spreading contiguity
across the whole system. Experimental results showed that CAP-
W accomplish a reduced internal and external congestions as
targeted. Also, more than 80% of the packets are delivered by
one-hop distance using CAP-W scheme.

REFERENCES

[1] ITRS. International Technology Roadmap for Semiconductors, 2011 edition.
[2] L. Benini and G. D. Micheli, “Networks on chips: a new SoC paradigm,” In

IEEE Computer, Vol. 35, Issue 1, pp. 70-78, 2002.
[3] M. F. Chang, J. Cong, A. Kaplan, M. Naik, G. Reinman, E. Socher, and S. W.

Tam, “CMP network-on-chip overlaid with multi-band RF-interconnect,” In

Proceedings of IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 191-202, 2008.

[4] V. F. Pavlidis and E. G. Friedman, “3-D topologies for networks-on-chip,” In

IEEE Transactions on Very Large Scale Integration, Vol. 15, Issue 10, pp.
1081-1090, 2007.

[5] A. Shacham, K. Bergman, S. Member, and L. P. Carloni, “Photonic networks-
on-chip for future generations of chip multiprocessors,” In IEEE Transactions
on Computers, Vol. 57, Issue 9, pp. 1246-1260, 2008.

[6] A. Ganguly, K. Chang, S. Deb, P. P. Pande, B. Belzer, and C. Teuscher,
“Scalable hybrid wireless network-on-chip architectures for multicore systems,”

In IEEE Transactions on Computers, Vol. 60, Issue 10, pp. 1485-1502, 2011.
[7] A. Rezaei, F. Safaei, M. Daneshtalab, and H. Tenhunen, “HiWA: A hierarchical

wireless network-on-chip architecture,” In Proceedings of IEEE International
High Performance Computing & Simulation (HPCS), pp. 499-505, 2014.

[8] A. Rezaei, M. Daneshtalab, F. Safaei, and D. Zhao, “Hierarchical approach for
hybrid wireless network-on-chip in many-core era,” In Elsevier International
Journal of Computers and Electrical Engineering, 2015. (DOI:
10.1016/j.compeleceng.2015.10.007)

[9] C. L. Chou and R. Marculescu, “Contention-aware application mapping for
network-on-chip communication architectures,” In IEEE International
Conference on Computer Design (ICCD), pp. 164-169, 2008.

[10] J. W. Brand, C. Ciordas, K. Goossens, and T. Basten, “Congestion-controlled
best-effort communication for networks-on-chip,” In Proceedings of Design,
Automation and Test in Europe (DATE), pp. 1-6, 2007.

[11] S. Ma, N. E. Jerger, and Z. Wang, “DBAR: an efficient routing algorithm to

support multiple concurrent applications in networks-on-chip,” In Proceedings
of International Symposium on Computer Architecture (ISCA), pp. 413–424,
2011.

[12] D. Huang, T. LaRocca, M. C. Chang, L. Samoska, A. Fung, R. Campbell, and
M. Andrews, “Terahertz CMOS frequency generator using linear superposition

technique,” In IEEE Journal of Solid-State Circuits, Vol. 43, Issue 12, pp. 2730-
2738, 2008.

[13] E. Seok, C. Cao, D. Shim, D. J. Arenas, D. B. Tanner, C. Hung, and K. K. O, “A

410GHz CMOS push-push oscillator with an on-chip patch antenna,” In IEEE
International Solid-State Circuits Conference (ISSCC), pp. 472-629, 2008.

[14] S. B. Lee, S. W. Tam, I. Pefkianakis, S. Lu, M. F. Chang, C. Guo, G. Reinman,
C. Peng, M. Naik, L. Zhang, and J. Cong, “A scalable micro wireless
interconnect structure for CMPs,” In Proceedings of the International
Conference on Mobile Computing and Networking (MobiCom), pp. 217-228,
2009.

[15] W. Green, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact, low RF
power, 10 Gb/s silicon Mach-Zehnder modulator,” In Optics Express, Vol. 15,
Issue 25, pp. 17106-17113, 2007.

[16] E. L. Carvalho, N. L. V. Calazans, and F. G. Moraes, “Heuristics for dynamic

task mapping in NoC-based heterogeneous MPSoCs,” In IEEE/IFIP
International Workshop on Rapid System Prototyping (RSP), pp. 34-40, 2007.

[17] E. L. Carvalho, N. L. V. Calazans, and F. G. Moraes, “Dynamic task mapping

for MPSoCs,” In IEEE Design & Test of Computers, Vol. 27, Issue 5, pp. 26-35,
2010.

[18] C. L. Chou, U. Y. Ogras, and R. Marculescu, “Energy- and performance-aware
incremental mapping for networks on chip with multiple voltage levels,” In

IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 27, Issue 10, pp. 1866-1879, 2008.

[19] M. Fattah, M. Ramirez, M. Daneshtalab, P. Liljeberg, and J. Plosila, “CoNA:
dynamic application mapping for congestion reduction in many-core systems,”

In IEEE International Conference on Computer Design(ICCD), pp. 364-370,
2012.

[20] M. Fattah, M. Daneshtalab, P. Liljeberg, and J. Plosila “Smart hill climbing for

agile dynamic mapping in manycore systems,” In ACM/EDAC/IEEE Design
Automation Conference (DAC), pp. 1-6, 2013.

[21] A. Rezaei, M. Daneshtalab, D. Zhao, F. Safaei, X. Wang, and M. Ebrahimi,
“Dynamic application mapping algorithm for wireless network-on-chip,” In

Proceedings of IEEE Euromicro Conference on Parallel, Distributed and
Network-Based Computing (PDP), pp. 421-424, 2015.

[22] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali, “Supporting task

migration in multi-processor systems-on-chip: a feasibility study,” In

Proceedings of Design, Automation and Test in Europe (DATE), pp. 1-6, 2006.
[23] B. Goodarzi and H. Sarbazi-Azad, “Task migration in mesh NoCs over virtual

point-to-point connections,” In Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP), pp. 463-469, 2011.

[24] “Task graph generator (TGG).” [Online]. Available:

http://sourceforge.net/projects/taskgraphgen/.
[25] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2

programs: characterization and methodological considerations,” In International
Symposium on Computer Architecture (ISCA), pp. 24-36, 1995.

[26] A. Nayebi, S. Meraji, A. Shamaei, and H. Sarbazi-Azad, “XMulator: A listener-
based integrated simulation platform for interconnection networks,” In Asia
International Conference on Modeling & Simulation (AMS), pp. 128-132, 2007.

0
10
20
30
40
50
60
70
80
90

100

Baseline NoC HiWA (XY+DAMA) HiWA (CAP-W)

Sy
st

em
 U

til
iz

at
io

n
(%

)

Maximum
System

Utilization

Average
System

Utilization49%
63.3%

68%

72.3%

84.7%
93.7%

749749

