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Abstract-Many-Core System-on-Chips (MCSoCs) require 

efficient task migration approach in order to reach system 

performance objectives such as load balancing, communication 

optimization, fault tolerance, and temperature control. In this 

paper an efficient self-aware migration approach is introduced 

for NoC-based MCSoCs using a centralized feedback controller 

in order to control the congestion over the system. The proposed 

approach is divided into four main steps: predicting behavior of 

the application, defining reliable triggers to initiate task 

migration, introducing cost comparison functions, and presenting 

a streamlined controlling mechanism to migrate tasks. The 

experimental results affirm that the proposed self-aware 

migration approach can help achieving significant throughput 

and system utilization while efficiently controlling system 

congestion. 
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I. INTRODUCTION 

Nowadays, by way of extremely high energy costs, single­
core high-frequency processors are less considered and 
manufacturers are moving toward designing multi and many­
core chips [1]. Thus, commercial Many-Core Systems-on­
Chips (MCSoCs) are available based on Network-on-Chip 
(NoC) interconnection network [2-4]. NoC provides a regular 
platform for connecting system resources and makes the 
communication scalable and flexible compared to traditional 
bus or hierarchical bus architectures [5]. Moreover, according 
to the International Technology Roadmap for Semiconductors 
(ITRS) [6], NoC-based MCSoCs may integrate hundreds of 
Processor Elements (PEs) in near future. Such complex 
systems will confront an exceedingly dynamic workload. 
Applications, as sets of communicating tasks, will enter and 
leave the system at run-time. Therefore, run-time task mapping 
for future MCSoCs is a challenging issue. 

Significant variation of application behavior places an 
upper-bound on improving the performance by primary task 
mapping. This makes some mapping strategies take behavior 
variation into consideration [7]. Task migration is a dynamic 
task re-mapping mechanism, which follows real-time variation 
of workload behavior. Task migration in a MCSoC is 
described as transferring a task from the source core where it is 
currently running to a destination core and then resuming its 
execution there in such a way that some system performance 
objectives are improved. 
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The overall performance of a NoC-based system is highly 
correlated to the network congestion [8]. Congestion increases 
the network latency severely [9] and also increases the network 
power consumption significantly [10]. Thus, in this paper a 
�elf-Aware Migration (SAMi) approach for NoC-based 
MCSoCs is presented in order to control system congestion. 
The key contributions of the proposed strategy are: 

• Predicting end-to-end traffic of the system based on 
application behavior; 

• Defming triggers for mltJatmg task migration based on 
average core congestion and average regional congestion 
of the network; 

• Introducing cost functions for specifying the possible 
destination cores of the task migration process; 

• Presenting a streamlined feedback controller for monitoring 
and managing the task migration process. 

The rest of the paper is arranged as follows. Section 11 
addresses backgrounds and previous works. A self-aware 
migration approach for NoC-based MCSoCs is proposed in 
Section Ill. Section IV depicts and discusses experimental 
results. Lastly, the conclusion and the proposal for future 
works are given in Section V. 

11. BACKGROUNDS AND PREVIOUS WORKS 

Since task mapping is known as an NP-hard problem, 
different heuristics such as Nearest Neighbor (NN) and Best 
Neighbor (BN) [11-12] addressed dynamic workload 
management in many-core systems. In these heuristics, the first 
node to start mapping is selected based the on assumed 
clustering nodes. In another approach called Incremental 
Approach (lNC) [13], the mapping problem is divided into two 
phases: the region selection, and the task allocation. In the 
region selection phase, the algorithm starts from the closest 
node to the Central Manager (CM) and includes it in the 
region. Then, it iteratively adds nodes to the selected region 
trying to keep both the selected region and remaining nodes 
contiguous. Then, in the task allocation phase, application tasks 
are mapped within the selected region. 

Due to significant vibration of application behavior, after 
initial task mapping, some dynamic task re-mapping 
mechanisms are required to improve the system performance at 
run-time. Task migration has been traditionally studied in 



distributed systems for dynamic load balancing. However, with 
the increasing popularity of MCSoCs in modern embedded 
systems, task migration has also gained research attention in 
this domain and has been studied for different purposes [14]. In 
[15] a lightweight migration mechanism for bus-based MCSoC 
is presented. The task migration method relies on modification 
of the program to define the checkpoints. When running to a 
checkpoint, the program checks whether there is a migration 
request for current task. Authors in [16] proposed a 
methodology using virtual channels to create temporary circuit 
connections that provide low latency and low power 
communication paths for the task migration flows. They 
adopted a 2D-mesh NoC, creating sub-meshes which may 
contain one or more cores. In [17] a task migration protocol is 
presented. Task may be migrated at any moment, not requiring 
migration checkpoints, and its context is also migrated. 

However, in previous works there is a lack of centralized 
controlling platform for managing the migration process. 
Furthermore, just a few of previous works have considered the 
effect of the trigger initiating a migration, as an important 
factor of task migration mechanisms. Moreover, predicting 
application behavior in order to adaptively define the threshold 
values for task migration, is another area that has rarely been 
addressed in the literature. A proper migration trigger based on 
application behavior can improve performance while keeping 
the complexity of migration algorithm low. The key 
contribution of this paper is to present an efficient self-aware 
migration approach for NoC-based MCSoCs taking advantage 
of application behavior and using control theory. 

Ill. PROPOSED TASK MIGRATION ApPROACH 

In this work, NoC-based MCSoC is represented by an 
architecture graph AG(C, L). The AG contains a set of cores 
Ci E C, which are connected together through unidirectional 
links lk E L . Each Ci E C has a set of running tasks TCi on it. 
Task migration is defined as transferring a weighted task 
(tSj' WSj) E Tcs from source core Cs E C to destination core 

Cd E C and then resuming its execution. The weights are 
computed based on the communication demand of each task. 

A. Application Behavior Prediction 

A general approach for predicting the future is to capture 
the past behaviors. Most existing works rely on some counters 
for capturing past behaviors, due to the simplicity and low area 
overhead of such counters [18]. There are two predictors 
supported by SAMi: short-term and long-term predictors. The 
short-term predictor anticipates based on the recent information 
stored in countersi.dj where (tsi' Wsi) E Tcs and 

(tdj' Wdj) E TCd are the tasks communicating with each other. 
On the contrary, the long-term predictor anticipates based on 
the pattern of communication experiences. The prediction 
function is defined as follows: 

. . {At-1 (si, dj). sel(si. dj) = 0 
Pt (SI. 

dJ) = tablesi,dj(historYsi,dj). sel(si. dj) = 1 (1) 

Where At (si. dj) is the actual traffic and Pt (si. dj) is the 
predicted traffic from task (tsi. Wsi) E Tcs to task 
(tdj. W dj) E TCd at the t -th interval. Also, history si,dj is the 

record of the communication pattern between tasks 
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(tsi• Wsi) E Tcs and (tdj• Wdj) E TCd while tablesi,dj is the 
long-term prediction table, in which each entry is indexed by 
historYsi,dj and includes a prediction rate. The prediction rate 
traces the amount of data transmitted when this pattern was 
encountered last time. If the same pattern appears again, the 
traced value is used as the prediction rate. The anticipation 
either comes from the short-term predictor or the long-term 
predictor, decided by a selector function sel. The selector 
function is designed according to the system requirements. 

ALGORITHM I. 

the: core threshold value 
th,: region threshold value 
C: set of cores of the system 
cs: source core 
Cd: destination core 
R: set of regions of the system 
Cr;: set of cores within the region i 

SAMI ALGORITHM 

C(c;): core congestion value of core C; 
R(r;): region congestion value of region r; 
Tc;: set oftasks and their communication weights running on core C; 
(tsj' Wsj) : a running taskj and its weight on Cs 

while true 
set the values of thc and thr 
if there is a Cs E C that C(cs) > thc then 

choose Cd E C with min[ C(Cd)] 
while there is a (tSj' WSj) E Tcs OR C(cs):S; thc 

choose (tSj' WSj) E Tcs with maximum weight 
name Cs after migrate (tSj. WSj) as Cs (new) 
if C(cs ) - C(cs(new)) + C(Cd):S; thc then 

I migrate (tsj. Wsj) to Cd 
else 

I remove (tsj• Wsj) from Tcs 
end 

end 

end 

if there is a rs E R that R(rs) > thr then 

choose Cd E C - Crs with minimum [C(Cd)] 
while there is C E Crs OR R(rs):S; thr 

choose Cs E Crs with maximum [C(c,)] 
while there is (tsj. Wsj) E Tcs OR R(rs):S; thr 

choose (tsj. Wsj) E Tcs with maximum weight 
name Cs after migrate (ts. ws) as Cs (new) 
if C(c,) - c(c'Cn,w) + C(Cd) s; the AND R(r,) - R(r,C",w) + R(rd) S; th,. then 

I migrate (tSj' WSj) to Cd 
else 

I remove (tsj' Wsj) from Tcs 
end 

remove Cs from Crs 
end 

end 

end 

end 

B. Trigger Definition 

We define two triggers in order to control congestion of the 
system: Core Congestion (CC) and Region Congestion (RC). 
CC considers congestion over each single core, while RC deals 
with total congestion of a region. For the CC trigger, the 
migration starts when the amount of packets received by a core 
in the network reaches the core congestion threshold (the). The 
value for the is defined adaptively based on the average traffic 
of the cores and prediction of the application's behavior. For 
the RC trigger, NoC is divided into regions. The migration 



starts when swn of the traffic in a region reaches the region 
congestion threshold (thr). The value for thr is defined 
adaptively based on the average traffic of the regions and 
prediction of the application's behavior. In order to avoid 
unnecessary task migration in low traffic patterns, a lower­
bound is considered for the and thr. 
C. Core Comparison Function 

A cost function is needed to determine the best destination 
core for task migration. For the CC trigger, the most weighted 
task on the source core will migrate to the destination core. The 
destination core is the one which has the minimwn congestion 
among all other cores while satisfying the threshold constraint 
after the task migration. If there is more than one candidate as 
the destination, one of them is randomly selected. For RC 
trigger, the approach is ahnost similar. After determining the 
congested region, the most weighted task on the core which is 
the most congested core in the region migrates to a destination 
which in addition to the above conditions should be outside the 
region boundary of the source core. Algorithm 1 shows SAMi 
algorithm. 

D. Congestion Control Platform 

Basically each controller compares the system output with 
a target value. After comparison, it manipulates the system 
actuators to minimize the error. The controller policy to tune 
the actuators strongly depends on the dynamic model of the 
target system and the system robustness against error 
disturbance. The dynamic model defines how the system reacts 
to the inputs including actuations and other inputs. The system 
robustness is defined as the system stability against 
overshooting of the output values from the target intended 
output. 

Fig. 1. A 9x9 NoC with 9 regions 

In order to speed up the task migration process, there is a 
Manager Node (MN) in each region that is responsible for 
collecting information about all the cores of the region. These 
MNs have created a virtual mesh network based on [16] in 
order to control task migration process efficiently. In addition 
to MNs there is a Central Manager (CM) that is responsible to 
manage the whole network. Fig. 1. shows a NoC with 81 nodes 
and nine regions. Moreover, the proposed congestion control 
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platform for a 2D mesh NoC-based MCSoCs is depicted in 
Fig. 2. The platform operates based on the Algorithm 1. 

Congestion Meter: Each core measures the traffic 
dynamically by calculating the moving average of packet flow 
in every link of its router. Then, the congestion level of each 
router is transferred to its MN. MNs send these information to 
Core Congestion Meter (CCM). In addition, the swn of 
congestion level of each region is also transferred to the 
Region Congestion Meter (RCM) by MN of each region. CCM 
and RCM compute average core congestion level and average 
region congestion level respectively and send them to the 
threshold calculator. 

Threshold Calculator: Threshold Calculator (TC) 
calculates the amounts of the and thr based on the average 
core and region congestion and also prediction of the 
application behavior. 

PID Controller: A Proportional Integral Derivative (PID) 
controller for actuator manipulation is employed. The general 
formula for the PID controller is as follows: 

J 
de(t) 

PIDout(t) = Kpe(t) + K; e(t) dt + Kd dt (2) 

Where PIDout(t), e(t), Kp' Ki, and Kd are the controller 

output, error, proportional gain, integral gain, and derivative 
gain, respectively. The proportional part determines how fast 
or aggressive the controller reacts to changes in the input 
signal. The main function of the integral part is to ensure that 
the process output agrees with the set point value in steady 
state. The derivative part determines how the system reacts to 
changes in the reference value; It also enhances stability in the 
system [19]. 

Task Migration Manager: Task Migration Manager 
(TMM) performs the task migration based on the information 
from controller outputs and congestion vectors. When a core or 
a region marked as congested by one of PIDs' outputs, the 
TMM finds the best destination core for the task migration 
based on the congestion vectors. As it is shown in algorithm 1, 
the best destination is the one which has the minimwn 
congestion among all other cores while satisfying the threshold 
constraint after the task migration. 

E. Task Migration Overhead 

In order to lower the overhead of task migration strategy, 
SAMi is implemented based on MCSoC Message Passing 
Interface [20], in which task mapping is independent of task re­
mapping. By changing task mapping table, task is remapped to 
another core. Then task state information is transferred using 
special mesh network shaped by MNs, hence the migrated task 
can restore execution on a different core. The task migration 
contributes less communication overhead because task state 
information excludes task code; therefore, after choosing the 
destination, TMM transfers state information of the chosen task 
(e.g. most weighted one) from the source core to the 
destination core. The task then resumes its execution there. 
Hence, remapping a task of application might not affect the 
application execution. 
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Fig. 2. Congestion control platform for NoC-based MCSoC 

IV. EXPERIMENT AL RESULTS 

Experiments are performed on a cycle-accurate many-core 
platform implemented in Systemc. A pruned version of an 
open source simulator for mesh-based NoCs called Noxim [21] 
is utilized as its communication architecture. Moreover, the 
power model taken from [22] is integrated as library into the 
simulator. Some multi-threaded real-time applications from the 
PARSEC [23] benchmark suite as well as several sets of non­
real-time applications with 4 to 35 tasks generated by TGG 
[24] with randomly distributed communication volumes are 
used in the experiments. The probabilities of selecting real­
time and non-real-time applications from the application 
repository are 30% and 70% respectively. 

Our many-core platform is enforced to support dynamic 
application mapping by implementing a CM residing in the 
Co E C (node no,o ) ' In our NoC-based MCSoC system, a 
random sequence of applications enters the scheduler but this 
sequence is kept fixed in all experiments on account of fair 
comparison. Applications are scheduled based on First Come 
First Serve (FCFS) policy, and an application is scheduled if 
and only if there is enough available nodes in the system. An 
allocation request for the application is scheduled to send to the 
CM of the platform. CM selects the region method using INC 
[13], and maps the application based on its real-time attributes. 
The time critical applications are mapped contiguously and 
isolated using pre-analyzed patterns. The non-real-time 
applications are mapped onto the available cores. A 
successfully mapped application is allocated to the 
corresponding nodes, where each node emulates the behavior 
of its allocated task. In addition to the dynamic mapping unit, 
the congestion control platform (including TC, PID controllers, 
CCM, RCM, and TMM) is also implemented (i.e., soft coded) 
as a part of the CM. In most of the available dynamic 
application mapping techniques in the literature, one core is 
already dedicated to the CM. This makes the area overhead of 
our congestion control platform so negligible. CM receives the 
congestion feedback from the MNs and sends actuation 
commands back to them using a dedicated low overhead circuit 
switch mesh network. 

After the predictability analysis, we compare the latency, 
throughput, system utilization, and power consumption of the 

148 

baseline in which the task migration policy is disabled with the 
SAMi platform under the set of applications. We run three set 
of experiments shown in Table I. 

TABLE I. SYSTEM SPECIFICA nON 

NoC Size Regions 

1st Setup 12x 12 9 

2nd Setup lOxlO 4 

3rd Setup 8x8 4 

A. Predictability Analysis 

In order to predict traffic patterns, a sample period has to be 
decided for information gathering. The duration of a period 
considerably affects the precision of prediction. Actual 
accuracy of the history-based prediction depends on the 
similarity of the application behavior between the sample 
period and the period after task migration. In other words, 
choosing the suitable sample period for recording the 
communication pattern between tasks (tsi' Wsi) E rcs and 
(tdj' Wdj) E rCd is essential. 

95 
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� 85 � 
g 80 

:c 75 � <.I 
70 :; ... ... 
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60 

55 

�CC (Short-term) �RC (Short-term) 

___ CC (Long-term) �RC (Long-term) 

5k 10k 15k 20k 25k 30k 35k 40k 

Sample period (# of packets) 

Fig. 3. Predictability analysis for the 3rd setup 

Fig. 3 shows the average predictabilities of our applications 
categories using RC and CC triggers for the 3rd setup using 
both short-term and long-term predictors. The horizontal 
coordinate presents the sample period (in term of the number 



of packets) for adapting threshold values. The best 
predictability of the applications is about 90% and the worst 
predictability is about 62%. We can see that the traffic is 
predictable, which provides great potential for run-time 
optimization of overall perfonnance. 

B. Latency 

Fig. 4 shows the performance gains of using SAMi. The 
results indicate that SAMi reduces average packet latency in 
comparison with baseline NoC (e.g. down to 38% for the fIrst 
experiment setup). This reduction is because of distributing 
congestion across the system. The average number of clock 
cycles that is elapsed in CM to map applications using INC 
[13] with number of tasks varying from 4 to 10 is presented in 
Table 11. 

• Baseline Noe .SAMi 

1 
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.. 

-< 
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• t::! 
-; 
e 0.4 .. 0 Z 

0.2 

0 

1st Setup 2nd Setup 3rd Setup 

System Specification 

Fig. 4. Normalized latency 

In addition, Table III shows the average number of clock 
cycles based on different task sizes for the 3rd setup. For 
example, the impact of migrating a 8 KB task is of 2lO 
KCycles, which translates into a delay of 2.1 ms on the 
operating frequency of 100 MHz. Although, the overhead time 
of task migration is negligible, this delay should have 
considered in process' deadlines for real-time tasks. 

TABLE 11. TASK MAPPING OVERHEAD 

Number of 
4 5 6 7 8 9 10 

Tasks 

Clock Cycles 
66 120 15 1 182 207 263 297 (KCycles) 

TABLE Ill. TASK MIGRA nON OVERHEAD 

Task Size 
1 2 4 8 16 32 (KB) 

Clock Cycles 
45 87 147 2 10 462 974 

(KCycles) 

C. Throughput 

Fig. 5 compares the normalized throughput for the set of 
applications on SAMi and the baseline NoC with no 
congestion control platform. SAMi can signifIcantly improve 
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the overall system throughput for different technology nodes 
(e.g. up to 50% for the fIrst experiment setup). In addition, 
SAMi becomes increasingly effective in tenns of the 
throughput with advanced technology nodes. 
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Fig. 5. Nonnalized throughput 
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D. System Utilization 

System utilization is another important factor to be 
analyzed between SAMi and the baseline NoC. As shown in 
Fig. 6, SAMi considerably increases the system utilization 
compared to the baseline NoC. Due to the area fragmentation 
that occurs because of dynamic mapping policy, SAMi cannot 
reach 100% utilization. (i.e. when applications does not exactly 
fit into the many-core system). 

E. Power Consumption 

Fig. 7 compares power consumption between SAMi and 
the baseline NoC. It can be noticed that, for all the setups, 
SAMi with task migration scenario consumes less power than 
the baseline NoC (e.g. down to 23% for the first experiment 
setup). Also for a larger NoC, the reduction of power 
consumption is larger when SAMi approach is applied. 

V. CONCLUSION AND FUTURE WORKS 

Congestion causes the many-core system to run sub­
optimally, and increasingly inefficient with scale. Thus in this 
paper an efficient self-aware task migration approach, SAMi, 
depending on application prediction along with congestion 
triggers and cost functions was proposed for NoC-based 
MCSoCs. Then a congestion control platfonn based on a 
control loop feedback mechanism (i.e. PID controller) was 
introduced. Experimental results revealed that the proposed 
application-specific migration approach can help achieving 
significant throughput and system utilization as well as less 
latency and power consumption in comparison with the 
baseline NoC, while efficiently controlling system congestion. 
Furthermore, for a larger NoC, the reduction of both latency 
and power consumption is larger when SAMi approach is 
applied. In a simple word, SAMi has a better scalability than 
the baseline approach. 

For future works, we are planning to minimize the task 
migration overhead for real-time tasks. Moreover, 
implementing SAMi in architectures that are specifically 
designed for dark silicon age (e.g. NoC-Sprinting [25] and 
Shift Sprinting [26]) seems to be beneficial. 

REFERENCES 

[1] A. Rezaei, M. Daneshtalab, F. Safaei, and D. Zhao, "Hierarchical 
approach for hybrid wireless network-on-chip in many-core era," In 
International Journal of Computers and Electrical Engineering, 
Vo!. 51, Issue C, pp. 225-234,2016. 

[2] "Adapteva, Inc. " [Online]. Available: http://www.adapteva.comi. 

[3] "Arteris, Inc. " [Online]. Available: http://www.arteris.comi. 

[4] "Sonics, Inc. " [Online]. Available: http://sonicsinc.comi. 

[5] A. Rezaei, M. Daneshtalab, M. Palesi, and D. Zhao, "Efficient 
congestion-aware scheme for wireless on-chip networks," In IEEE 
Euromicro International Conference on Parallel, Distributed and 
Network-Based Computing (PDP), pp. 742-749, 2016. 

[6] ITRS. International Technology Roadmap for Semiconductors, 
2011 edition. 

[7] C. Wang, L. Yu, L. Liu, and T Chen, "Packet triggered prediction 
based task migration for network-on-chip," In Euromicro 
International Conference on Parallel, Distributed and Network­
Based Processing (PDP), pp. 491-498, 2012. 

[8] C. L. Chou and R. Marculescu, "Contention-aware application 
mapping for network-on-chip communication architeclures," In 
IEEE International Conference on Computer Design (ICCD), pp. 
164-169,2008. 

150 

[9] J. W. Brand, C. Ciordas, K. Goossens, and T. Basten, "Congestion­
controlled best-effort communication for networks-on-chip," In 
Proceedings of Design, Automation and Test in Europe (DATE), pp. 
1-6,2007. 

[10] S. Ma, N. E. Jerger, and Z. Wang, "DBAR: an efficient routing 
algorithm to support multiple concurrent applications in networks­
on-chip," In Proceedings of International Symposium on Computer 
Architecture (ISCA), pp. 413-424, 2011. 

[11] E. L. Carvalho, N. L. V. Calazans, and F. G. Moraes, "Heuristics for 
dynamic task mapping in NoC-based heterogeneous MPSoCs," In 
IEEE/IFIP International Workshop on Rapid System Prototyping 
(RSP),pp. 34-40,2007. 

[12] E. L. Carvalho, N. L. V. Calazans, and F. G. Moraes, "Dynamic 
task mapping for MPSoCs," In IEEE Design & Test of Computers, 
Vo!. 27, Issue 5, pp. 26-35, 2010. 

[13] C. L. Chou, U. Y. Ogras, and R. Marculescu, "Energy- and 
performance-aware incremental mapping for networks on chip with 
multiple voltage levels," In IEEE Transactions on Computer-Aided 
Design of Integrated Circuits and Systems, Vo!. 27, Issue 10, pp. 
1866-1879,2008. 

[14] W. Quan and A. D. Pimentel, "A system-level simulation 
framework for evaluating task migration in MPSoCs," In 
Proceedings of International Conference on Compilers, 
Architecture and Synthesis for Embedded Systems (CASES), Article 
13,2014. 

[15] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali, 
"Supporting task migration in multi-processor systems-on-chip: a 

feasibility study," In Proceedings of Design, Automation and Test in 
Europe (DATE), pp. 1-6,2006. 

[16] B. Goodarzi and H. Sarbazi-Azad, "Task migration in mesh NoCs 
over virtual point-to-point connections," In Euromicro International 
Conference on Parallel, Distributed and Network-Based Processing 
(PDP), pp. 463-469, 2011. 

[17] F. G. Moraes, G. A. Madalozzo, G. M. Castilhos, and E. A. Carara, 
"Proposal and evaluation of a task migration protocol for NoC­

based MPSoCs," In IEEE International Symposium on Circuits and 
Systems (ISCAS), pp. 644-647, 2012. 

[18] Y. Huang, K.-K. Chou, c.-T. King, and S.-Y. Tseng, "NTPT: on the 
end-to-end traffic prediction in the on-chip networks," In 
Proceedings of Design Automation Conference (DAC), pp. 449-452, 
2010. 

[19] S. Holmbacka, S. Lafond, and J. Lilius, "A PID-controlled power 
manager for energy efficient web clusters," In Proceedings of IEEE 
International Conference on Dependable, Autonomic and Secure 
Computing (DASC), pp. 721-728,2011. 

[20] F. Fu, S. Sun, X. Hu, J. Song, J. Wang, and M. Yu, "MMPI: a 
flexible and efficient multiprocessor message passing interface for 
NoC-based MPSoC," In Proceedings of IEEE International SoC 
Conference (SOCC), pp. 359-362,2010. 

[21] V. Catania, A. Mineo, S. Monteleone, M. Palesi, D. Patti, "Noxim: 
an open, extensible and cycle-accurate network on chip simulator," 
In IEEE International Conference on Application-specific Systems, 
Architectures and Processors (ASAP), pp. 162-163, 2015. 

[22] L. Wang and K. Skadron "Dark vs. dim silicon and near-threshold 
computing extended results," Technical Report (UV A-CS-20 13-0 I), 
Department of Computer Science, University of Virginia, 2013. 

[23] C. Bienia, S. Kumar, J. P. Singh, and K. Li, "The PARSEC 
benchmark suite: characterization and architectural implications," In 
International Conference on Parallel Architectures and 
Compilation Techniques (PACT), pp. 72-81,2008. 

[24] Task graph generator (TGG). [Online]. Available: 
http://sourceforge. net/proj ects/taskgraphgenl. 

[25] J. Zhan, Y. Xie, and G. Sun,"NoC-sprinting: interconnect for fine­
grained sprinting in the dark silicon era," In Proceedings of Design 
Automation Conference (DAC), pp. 1-6,2014. 

[26] A. Rezaei, D. Zhao, M. Daneshtalab, and H. Wu, "Shift sprinting: 
fine-grained temperature-aware NoC-based MCSoC architecture in 
dark silicon age," In Proceedings of Design Automation Conference 
(DAC), Article 155,2016. 


