
SAMi: Self-Aware Migration Approach for Congestion

Reduction in NoC-based MCSoC

Amin Rezaei 1 , Masoud Daneshtalab2, Dan Zhao3, Mehdi Modarressi4
I University of Louisiana at Lafayette (ULL), Lafayette, USA (me@aminrezaei.com)

2 Malardalen University (MDH) and Royal Institute of Technology (KTH), Sweden (masdan@kth.se)
3 Old Dominion University (ODU), Norfolk, USA

4 University of Tehran (UT), Tehran, Iran (modarressi@ut.ac.ir)

Abstract-Many-Core System-on-Chips (MCSoCs) require

efficient task migration approach in order to reach system

performance objectives such as load balancing, communication

optimization, fault tolerance, and temperature control. In this

paper an efficient self-aware migration approach is introduced

for NoC-based MCSoCs using a centralized feedback controller

in order to control the congestion over the system. The proposed

approach is divided into four main steps: predicting behavior of

the application, defining reliable triggers to initiate task

migration, introducing cost comparison functions, and presenting

a streamlined controlling mechanism to migrate tasks. The

experimental results affirm that the proposed self-aware

migration approach can help achieving significant throughput

and system utilization while efficiently controlling system

congestion.

Keywords-MCSoC; NoC; Task Migration; Feedback
Controller; Congestion; Performance

I. INTRODUCTION

Nowadays, by way of extremely high energy costs, single­
core high-frequency processors are less considered and
manufacturers are moving toward designing multi and many­
core chips [1]. Thus, commercial Many-Core Systems-on­
Chips (MCSoCs) are available based on Network-on-Chip
(NoC) interconnection network [2-4]. NoC provides a regular
platform for connecting system resources and makes the
communication scalable and flexible compared to traditional
bus or hierarchical bus architectures [5]. Moreover, according
to the International Technology Roadmap for Semiconductors
(ITRS) [6], NoC-based MCSoCs may integrate hundreds of
Processor Elements (PEs) in near future. Such complex
systems will confront an exceedingly dynamic workload.
Applications, as sets of communicating tasks, will enter and
leave the system at run-time. Therefore, run-time task mapping
for future MCSoCs is a challenging issue.

Significant variation of application behavior places an
upper-bound on improving the performance by primary task
mapping. This makes some mapping strategies take behavior
variation into consideration [7]. Task migration is a dynamic
task re-mapping mechanism, which follows real-time variation
of workload behavior. Task migration in a MCSoC is
described as transferring a task from the source core where it is
currently running to a destination core and then resuming its
execution there in such a way that some system performance
objectives are improved.

978-1-5090-1367 -8/16/$31.00 ©2016 IEEE 145

The overall performance of a NoC-based system is highly
correlated to the network congestion [8]. Congestion increases
the network latency severely [9] and also increases the network
power consumption significantly [10]. Thus, in this paper a
�elf-Aware Migration (SAMi) approach for NoC-based
MCSoCs is presented in order to control system congestion.
The key contributions of the proposed strategy are:

• Predicting end-to-end traffic of the system based on
application behavior;

• Defming triggers for mltJatmg task migration based on
average core congestion and average regional congestion
of the network;

• Introducing cost functions for specifying the possible
destination cores of the task migration process;

• Presenting a streamlined feedback controller for monitoring
and managing the task migration process.

The rest of the paper is arranged as follows. Section 11
addresses backgrounds and previous works. A self-aware
migration approach for NoC-based MCSoCs is proposed in
Section Ill. Section IV depicts and discusses experimental
results. Lastly, the conclusion and the proposal for future
works are given in Section V.

11. BACKGROUNDS AND PREVIOUS WORKS

Since task mapping is known as an NP-hard problem,
different heuristics such as Nearest Neighbor (NN) and Best
Neighbor (BN) [11-12] addressed dynamic workload
management in many-core systems. In these heuristics, the first
node to start mapping is selected based the on assumed
clustering nodes. In another approach called Incremental
Approach (lNC) [13], the mapping problem is divided into two
phases: the region selection, and the task allocation. In the
region selection phase, the algorithm starts from the closest
node to the Central Manager (CM) and includes it in the
region. Then, it iteratively adds nodes to the selected region
trying to keep both the selected region and remaining nodes
contiguous. Then, in the task allocation phase, application tasks
are mapped within the selected region.

Due to significant vibration of application behavior, after
initial task mapping, some dynamic task re-mapping
mechanisms are required to improve the system performance at
run-time. Task migration has been traditionally studied in

distributed systems for dynamic load balancing. However, with
the increasing popularity of MCSoCs in modern embedded
systems, task migration has also gained research attention in
this domain and has been studied for different purposes [14]. In
[15] a lightweight migration mechanism for bus-based MCSoC
is presented. The task migration method relies on modification
of the program to define the checkpoints. When running to a
checkpoint, the program checks whether there is a migration
request for current task. Authors in [16] proposed a
methodology using virtual channels to create temporary circuit
connections that provide low latency and low power
communication paths for the task migration flows. They
adopted a 2D-mesh NoC, creating sub-meshes which may
contain one or more cores. In [17] a task migration protocol is
presented. Task may be migrated at any moment, not requiring
migration checkpoints, and its context is also migrated.

However, in previous works there is a lack of centralized
controlling platform for managing the migration process.
Furthermore, just a few of previous works have considered the
effect of the trigger initiating a migration, as an important
factor of task migration mechanisms. Moreover, predicting
application behavior in order to adaptively define the threshold
values for task migration, is another area that has rarely been
addressed in the literature. A proper migration trigger based on
application behavior can improve performance while keeping
the complexity of migration algorithm low. The key
contribution of this paper is to present an efficient self-aware
migration approach for NoC-based MCSoCs taking advantage
of application behavior and using control theory.

Ill. PROPOSED TASK MIGRATION ApPROACH

In this work, NoC-based MCSoC is represented by an
architecture graph AG(C, L). The AG contains a set of cores
Ci E C, which are connected together through unidirectional
links lk E L . Each Ci E C has a set of running tasks TCi on it.
Task migration is defined as transferring a weighted task
(tSj' WSj) E Tcs from source core Cs E C to destination core

Cd E C and then resuming its execution. The weights are
computed based on the communication demand of each task.

A. Application Behavior Prediction

A general approach for predicting the future is to capture
the past behaviors. Most existing works rely on some counters
for capturing past behaviors, due to the simplicity and low area
overhead of such counters [18]. There are two predictors
supported by SAMi: short-term and long-term predictors. The
short-term predictor anticipates based on the recent information
stored in countersi.dj where (tsi' Wsi) E Tcs and

(tdj' Wdj) E TCd are the tasks communicating with each other.
On the contrary, the long-term predictor anticipates based on
the pattern of communication experiences. The prediction
function is defined as follows:

. . {At-1 (si, dj). sel(si. dj) = 0
Pt (SI.

dJ) = tablesi,dj(historYsi,dj). sel(si. dj) = 1 (1)

Where At (si. dj) is the actual traffic and Pt (si. dj) is the
predicted traffic from task (tsi. Wsi) E Tcs to task
(tdj. W dj) E TCd at the t -th interval. Also, history si,dj is the

record of the communication pattern between tasks

146

(tsi• Wsi) E Tcs and (tdj• Wdj) E TCd while tablesi,dj is the
long-term prediction table, in which each entry is indexed by
historYsi,dj and includes a prediction rate. The prediction rate
traces the amount of data transmitted when this pattern was
encountered last time. If the same pattern appears again, the
traced value is used as the prediction rate. The anticipation
either comes from the short-term predictor or the long-term
predictor, decided by a selector function sel. The selector
function is designed according to the system requirements.

ALGORITHM I.

the: core threshold value
th,: region threshold value
C: set of cores of the system
cs: source core
Cd: destination core
R: set of regions of the system
Cr;: set of cores within the region i

SAMI ALGORITHM

C(c;): core congestion value of core C;
R(r;): region congestion value of region r;
Tc;: set oftasks and their communication weights running on core C;
(tsj' Wsj) : a running taskj and its weight on Cs

while true
set the values of thc and thr
if there is a Cs E C that C(cs) > thc then

choose Cd E C with min[C(Cd)]
while there is a (tSj' WSj) E Tcs OR C(cs):S; thc

choose (tSj' WSj) E Tcs with maximum weight
name Cs after migrate (tSj. WSj) as Cs (new)
if C(cs) - C(cs(new)) + C(Cd):S; thc then

I migrate (tsj. Wsj) to Cd
else

I remove (tsj• Wsj) from Tcs
end

end

end

if there is a rs E R that R(rs) > thr then

choose Cd E C - Crs with minimum [C(Cd)]
while there is C E Crs OR R(rs):S; thr

choose Cs E Crs with maximum [C(c,)]
while there is (tsj. Wsj) E Tcs OR R(rs):S; thr

choose (tsj. Wsj) E Tcs with maximum weight
name Cs after migrate (ts. ws) as Cs (new)
if C(c,) - c(c'Cn,w) + C(Cd) s; the AND R(r,) - R(r,C",w) + R(rd) S; th,. then

I migrate (tSj' WSj) to Cd
else

I remove (tsj' Wsj) from Tcs
end

remove Cs from Crs
end

end

end

end

B. Trigger Definition

We define two triggers in order to control congestion of the
system: Core Congestion (CC) and Region Congestion (RC).
CC considers congestion over each single core, while RC deals
with total congestion of a region. For the CC trigger, the
migration starts when the amount of packets received by a core
in the network reaches the core congestion threshold (the). The
value for the is defined adaptively based on the average traffic
of the cores and prediction of the application's behavior. For
the RC trigger, NoC is divided into regions. The migration

starts when swn of the traffic in a region reaches the region
congestion threshold (thr). The value for thr is defined
adaptively based on the average traffic of the regions and
prediction of the application's behavior. In order to avoid
unnecessary task migration in low traffic patterns, a lower­
bound is considered for the and thr.
C. Core Comparison Function

A cost function is needed to determine the best destination
core for task migration. For the CC trigger, the most weighted
task on the source core will migrate to the destination core. The
destination core is the one which has the minimwn congestion
among all other cores while satisfying the threshold constraint
after the task migration. If there is more than one candidate as
the destination, one of them is randomly selected. For RC
trigger, the approach is ahnost similar. After determining the
congested region, the most weighted task on the core which is
the most congested core in the region migrates to a destination
which in addition to the above conditions should be outside the
region boundary of the source core. Algorithm 1 shows SAMi
algorithm.

D. Congestion Control Platform

Basically each controller compares the system output with
a target value. After comparison, it manipulates the system
actuators to minimize the error. The controller policy to tune
the actuators strongly depends on the dynamic model of the
target system and the system robustness against error
disturbance. The dynamic model defines how the system reacts
to the inputs including actuations and other inputs. The system
robustness is defined as the system stability against
overshooting of the output values from the target intended
output.

Fig. 1. A 9x9 NoC with 9 regions

In order to speed up the task migration process, there is a
Manager Node (MN) in each region that is responsible for
collecting information about all the cores of the region. These
MNs have created a virtual mesh network based on [16] in
order to control task migration process efficiently. In addition
to MNs there is a Central Manager (CM) that is responsible to
manage the whole network. Fig. 1. shows a NoC with 81 nodes
and nine regions. Moreover, the proposed congestion control

147

platform for a 2D mesh NoC-based MCSoCs is depicted in
Fig. 2. The platform operates based on the Algorithm 1.

Congestion Meter: Each core measures the traffic
dynamically by calculating the moving average of packet flow
in every link of its router. Then, the congestion level of each
router is transferred to its MN. MNs send these information to
Core Congestion Meter (CCM). In addition, the swn of
congestion level of each region is also transferred to the
Region Congestion Meter (RCM) by MN of each region. CCM
and RCM compute average core congestion level and average
region congestion level respectively and send them to the
threshold calculator.

Threshold Calculator: Threshold Calculator (TC)
calculates the amounts of the and thr based on the average
core and region congestion and also prediction of the
application behavior.

PID Controller: A Proportional Integral Derivative (PID)
controller for actuator manipulation is employed. The general
formula for the PID controller is as follows:

J
de(t)

PIDout(t) = Kpe(t) + K; e(t) dt + Kd dt (2)

Where PIDout(t), e(t), Kp' Ki, and Kd are the controller

output, error, proportional gain, integral gain, and derivative
gain, respectively. The proportional part determines how fast
or aggressive the controller reacts to changes in the input
signal. The main function of the integral part is to ensure that
the process output agrees with the set point value in steady
state. The derivative part determines how the system reacts to
changes in the reference value; It also enhances stability in the
system [19].

Task Migration Manager: Task Migration Manager
(TMM) performs the task migration based on the information
from controller outputs and congestion vectors. When a core or
a region marked as congested by one of PIDs' outputs, the
TMM finds the best destination core for the task migration
based on the congestion vectors. As it is shown in algorithm 1,
the best destination is the one which has the minimwn
congestion among all other cores while satisfying the threshold
constraint after the task migration.

E. Task Migration Overhead

In order to lower the overhead of task migration strategy,
SAMi is implemented based on MCSoC Message Passing
Interface [20], in which task mapping is independent of task re­
mapping. By changing task mapping table, task is remapped to
another core. Then task state information is transferred using
special mesh network shaped by MNs, hence the migrated task
can restore execution on a different core. The task migration
contributes less communication overhead because task state
information excludes task code; therefore, after choosing the
destination, TMM transfers state information of the chosen task
(e.g. most weighted one) from the source core to the
destination core. The task then resumes its execution there.
Hence, remapping a task of application might not affect the
application execution.

Average Core Con�tion HaC-Based MCSoC

CCM CC Matrix

Task
Task Migratioo l-+-+_f--t:=I:=::==I--jf--I Migration

-��-..... Manager

RC Mj1asuremenl

Averase Region Congestion

RCM
RC Matrix LCM_L......J.......J._L....

Fig. 2. Congestion control platform for NoC-based MCSoC

IV. EXPERIMENT AL RESULTS

Experiments are performed on a cycle-accurate many-core
platform implemented in Systemc. A pruned version of an
open source simulator for mesh-based NoCs called Noxim [21]
is utilized as its communication architecture. Moreover, the
power model taken from [22] is integrated as library into the
simulator. Some multi-threaded real-time applications from the
PARSEC [23] benchmark suite as well as several sets of non­
real-time applications with 4 to 35 tasks generated by TGG
[24] with randomly distributed communication volumes are
used in the experiments. The probabilities of selecting real­
time and non-real-time applications from the application
repository are 30% and 70% respectively.

Our many-core platform is enforced to support dynamic
application mapping by implementing a CM residing in the
Co E C (node no,o) ' In our NoC-based MCSoC system, a
random sequence of applications enters the scheduler but this
sequence is kept fixed in all experiments on account of fair
comparison. Applications are scheduled based on First Come
First Serve (FCFS) policy, and an application is scheduled if
and only if there is enough available nodes in the system. An
allocation request for the application is scheduled to send to the
CM of the platform. CM selects the region method using INC
[13], and maps the application based on its real-time attributes.
The time critical applications are mapped contiguously and
isolated using pre-analyzed patterns. The non-real-time
applications are mapped onto the available cores. A
successfully mapped application is allocated to the
corresponding nodes, where each node emulates the behavior
of its allocated task. In addition to the dynamic mapping unit,
the congestion control platform (including TC, PID controllers,
CCM, RCM, and TMM) is also implemented (i.e., soft coded)
as a part of the CM. In most of the available dynamic
application mapping techniques in the literature, one core is
already dedicated to the CM. This makes the area overhead of
our congestion control platform so negligible. CM receives the
congestion feedback from the MNs and sends actuation
commands back to them using a dedicated low overhead circuit
switch mesh network.

After the predictability analysis, we compare the latency,
throughput, system utilization, and power consumption of the

148

baseline in which the task migration policy is disabled with the
SAMi platform under the set of applications. We run three set
of experiments shown in Table I.

TABLE I. SYSTEM SPECIFICA nON

NoC Size Regions

1st Setup 12x 12 9

2nd Setup lOxlO 4

3rd Setup 8x8 4

A. Predictability Analysis

In order to predict traffic patterns, a sample period has to be
decided for information gathering. The duration of a period
considerably affects the precision of prediction. Actual
accuracy of the history-based prediction depends on the
similarity of the application behavior between the sample
period and the period after task migration. In other words,
choosing the suitable sample period for recording the
communication pattern between tasks (tsi' Wsi) E rcs and
(tdj' Wdj) E rCd is essential.

95

90

� 85 �
g 80

:c 75 � <.I
70 :;
65 =-

60

55

�CC (Short-term) �RC (Short-term)

___ CC (Long-term) �RC (Long-term)

5k 10k 15k 20k 25k 30k 35k 40k

Sample period (# of packets)

Fig. 3. Predictability analysis for the 3rd setup

Fig. 3 shows the average predictabilities of our applications
categories using RC and CC triggers for the 3rd setup using
both short-term and long-term predictors. The horizontal
coordinate presents the sample period (in term of the number

of packets) for adapting threshold values. The best
predictability of the applications is about 90% and the worst
predictability is about 62%. We can see that the traffic is
predictable, which provides great potential for run-time
optimization of overall perfonnance.

B. Latency

Fig. 4 shows the performance gains of using SAMi. The
results indicate that SAMi reduces average packet latency in
comparison with baseline NoC (e.g. down to 38% for the fIrst
experiment setup). This reduction is because of distributing
congestion across the system. The average number of clock
cycles that is elapsed in CM to map applications using INC
[13] with number of tasks varying from 4 to 10 is presented in
Table 11.

• Baseline Noe .SAMi

1

.... <.I
= 0.8 �
..

-<
"C 0.6 ...
• t::!
-;
e 0.4 .. 0 Z

0.2

0

1st Setup 2nd Setup 3rd Setup

System Specification

Fig. 4. Normalized latency

In addition, Table III shows the average number of clock
cycles based on different task sizes for the 3rd setup. For
example, the impact of migrating a 8 KB task is of 2lO
KCycles, which translates into a delay of 2.1 ms on the
operating frequency of 100 MHz. Although, the overhead time
of task migration is negligible, this delay should have
considered in process' deadlines for real-time tasks.

TABLE 11. TASK MAPPING OVERHEAD

Number of
4 5 6 7 8 9 10

Tasks

Clock Cycles
66 120 15 1 182 207 263 297 (KCycles)

TABLE Ill. TASK MIGRA nON OVERHEAD

Task Size
1 2 4 8 16 32 (KB)

Clock Cycles
45 87 147 2 10 462 974

(KCycles)

C. Throughput

Fig. 5 compares the normalized throughput for the set of
applications on SAMi and the baseline NoC with no
congestion control platform. SAMi can signifIcantly improve

149

the overall system throughput for different technology nodes
(e.g. up to 50% for the fIrst experiment setup). In addition,
SAMi becomes increasingly effective in tenns of the
throughput with advanced technology nodes.

1.6

:; Q.
.: 1.2 IOJ) =
e
.:
� 0.8

.�
-;
E 0.4 o Z

• Baseline Noe .SAMi

o .1..-......... _

80

� 60
=
o
·z
..
� 40

;5
e
� '" 20
£

1st Setup 2nd Setup 3rd Setup

System Specification

Fig. 5. Nonnalized throughput

• Baseline Noe .SAMi

o .1..-......... _

=
o

; Q.
e = '"
=
o
U
.. ..,
�
o
�
"C
.�
-;
e ..
o Z

1

0.8

0.6

0.4

0.2

1st Setup 2nd Setup 3rd Setup

System Specification

Fig. 6. System utilization

• Baseline Noe .SAMi

o .1..-......... _

1st Setup 2nd Setup 3rd Setup

System Specification

Fig. 7. Normalized power consumption

D. System Utilization

System utilization is another important factor to be
analyzed between SAMi and the baseline NoC. As shown in
Fig. 6, SAMi considerably increases the system utilization
compared to the baseline NoC. Due to the area fragmentation
that occurs because of dynamic mapping policy, SAMi cannot
reach 100% utilization. (i.e. when applications does not exactly
fit into the many-core system).

E. Power Consumption

Fig. 7 compares power consumption between SAMi and
the baseline NoC. It can be noticed that, for all the setups,
SAMi with task migration scenario consumes less power than
the baseline NoC (e.g. down to 23% for the first experiment
setup). Also for a larger NoC, the reduction of power
consumption is larger when SAMi approach is applied.

V. CONCLUSION AND FUTURE WORKS

Congestion causes the many-core system to run sub­
optimally, and increasingly inefficient with scale. Thus in this
paper an efficient self-aware task migration approach, SAMi,
depending on application prediction along with congestion
triggers and cost functions was proposed for NoC-based
MCSoCs. Then a congestion control platfonn based on a
control loop feedback mechanism (i.e. PID controller) was
introduced. Experimental results revealed that the proposed
application-specific migration approach can help achieving
significant throughput and system utilization as well as less
latency and power consumption in comparison with the
baseline NoC, while efficiently controlling system congestion.
Furthermore, for a larger NoC, the reduction of both latency
and power consumption is larger when SAMi approach is
applied. In a simple word, SAMi has a better scalability than
the baseline approach.

For future works, we are planning to minimize the task
migration overhead for real-time tasks. Moreover,
implementing SAMi in architectures that are specifically
designed for dark silicon age (e.g. NoC-Sprinting [25] and
Shift Sprinting [26]) seems to be beneficial.

REFERENCES

[1] A. Rezaei, M. Daneshtalab, F. Safaei, and D. Zhao, "Hierarchical
approach for hybrid wireless network-on-chip in many-core era," In
International Journal of Computers and Electrical Engineering,
Vo!. 51, Issue C, pp. 225-234,2016.

[2] "Adapteva, Inc. " [Online]. Available: http://www.adapteva.comi.

[3] "Arteris, Inc. " [Online]. Available: http://www.arteris.comi.

[4] "Sonics, Inc. " [Online]. Available: http://sonicsinc.comi.

[5] A. Rezaei, M. Daneshtalab, M. Palesi, and D. Zhao, "Efficient
congestion-aware scheme for wireless on-chip networks," In IEEE
Euromicro International Conference on Parallel, Distributed and
Network-Based Computing (PDP), pp. 742-749, 2016.

[6] ITRS. International Technology Roadmap for Semiconductors,
2011 edition.

[7] C. Wang, L. Yu, L. Liu, and T Chen, "Packet triggered prediction
based task migration for network-on-chip," In Euromicro
International Conference on Parallel, Distributed and Network­
Based Processing (PDP), pp. 491-498, 2012.

[8] C. L. Chou and R. Marculescu, "Contention-aware application
mapping for network-on-chip communication architeclures," In
IEEE International Conference on Computer Design (ICCD), pp.
164-169,2008.

150

[9] J. W. Brand, C. Ciordas, K. Goossens, and T. Basten, "Congestion­
controlled best-effort communication for networks-on-chip," In
Proceedings of Design, Automation and Test in Europe (DATE), pp.
1-6,2007.

[10] S. Ma, N. E. Jerger, and Z. Wang, "DBAR: an efficient routing
algorithm to support multiple concurrent applications in networks­
on-chip," In Proceedings of International Symposium on Computer
Architecture (ISCA), pp. 413-424, 2011.

[11] E. L. Carvalho, N. L. V. Calazans, and F. G. Moraes, "Heuristics for
dynamic task mapping in NoC-based heterogeneous MPSoCs," In
IEEE/IFIP International Workshop on Rapid System Prototyping
(RSP),pp. 34-40,2007.

[12] E. L. Carvalho, N. L. V. Calazans, and F. G. Moraes, "Dynamic
task mapping for MPSoCs," In IEEE Design & Test of Computers,
Vo!. 27, Issue 5, pp. 26-35, 2010.

[13] C. L. Chou, U. Y. Ogras, and R. Marculescu, "Energy- and
performance-aware incremental mapping for networks on chip with
multiple voltage levels," In IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vo!. 27, Issue 10, pp.
1866-1879,2008.

[14] W. Quan and A. D. Pimentel, "A system-level simulation
framework for evaluating task migration in MPSoCs," In
Proceedings of International Conference on Compilers,
Architecture and Synthesis for Embedded Systems (CASES), Article
13,2014.

[15] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali,
"Supporting task migration in multi-processor systems-on-chip: a

feasibility study," In Proceedings of Design, Automation and Test in
Europe (DATE), pp. 1-6,2006.

[16] B. Goodarzi and H. Sarbazi-Azad, "Task migration in mesh NoCs
over virtual point-to-point connections," In Euromicro International
Conference on Parallel, Distributed and Network-Based Processing
(PDP), pp. 463-469, 2011.

[17] F. G. Moraes, G. A. Madalozzo, G. M. Castilhos, and E. A. Carara,
"Proposal and evaluation of a task migration protocol for NoC­

based MPSoCs," In IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 644-647, 2012.

[18] Y. Huang, K.-K. Chou, c.-T. King, and S.-Y. Tseng, "NTPT: on the
end-to-end traffic prediction in the on-chip networks," In
Proceedings of Design Automation Conference (DAC), pp. 449-452,
2010.

[19] S. Holmbacka, S. Lafond, and J. Lilius, "A PID-controlled power
manager for energy efficient web clusters," In Proceedings of IEEE
International Conference on Dependable, Autonomic and Secure
Computing (DASC), pp. 721-728,2011.

[20] F. Fu, S. Sun, X. Hu, J. Song, J. Wang, and M. Yu, "MMPI: a
flexible and efficient multiprocessor message passing interface for
NoC-based MPSoC," In Proceedings of IEEE International SoC
Conference (SOCC), pp. 359-362,2010.

[21] V. Catania, A. Mineo, S. Monteleone, M. Palesi, D. Patti, "Noxim:
an open, extensible and cycle-accurate network on chip simulator,"
In IEEE International Conference on Application-specific Systems,
Architectures and Processors (ASAP), pp. 162-163, 2015.

[22] L. Wang and K. Skadron "Dark vs. dim silicon and near-threshold
computing extended results," Technical Report (UV A-CS-20 13-0 I),
Department of Computer Science, University of Virginia, 2013.

[23] C. Bienia, S. Kumar, J. P. Singh, and K. Li, "The PARSEC
benchmark suite: characterization and architectural implications," In
International Conference on Parallel Architectures and
Compilation Techniques (PACT), pp. 72-81,2008.

[24] Task graph generator (TGG). [Online]. Available:
http://sourceforge. net/proj ects/taskgraphgenl.

[25] J. Zhan, Y. Xie, and G. Sun,"NoC-sprinting: interconnect for fine­
grained sprinting in the dark silicon era," In Proceedings of Design
Automation Conference (DAC), pp. 1-6,2014.

[26] A. Rezaei, D. Zhao, M. Daneshtalab, and H. Wu, "Shift sprinting:
fine-grained temperature-aware NoC-based MCSoC architecture in
dark silicon age," In Proceedings of Design Automation Conference
(DAC), Article 155,2016.

