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a b s t r a c t 

In order to fulfill the ever-increasing demand for high-speed and high-bandwidth, wireless-based MCSoC 

is presented based on a NoC communication infrastructure. Inspiring the separation between the commu- 

nication and the computation demands as well as providing the flexible topology configurations, makes 

wireless-based NoC a promising future MCSoC architecture. However, congestion occurrence in wireless 

routers reduces the benefit of high-speed wireless links and significantly increases the network latency. 

Therefore, in this paper, a congestion-aware platform, named CAP-W, is introduced for wireless-based 

NoC in order to reduce congestion in the network and especially over wireless routers. The triple-layer 

platform of CAP-W is composed of mapping, migration, and routing layers. In order to minimize the con- 

gestion probability, the mapping layer is responsible for selecting the suitable free core as the first candi- 

date, finding the suitable first task to be mapped onto the selected core, and allocating other tasks with 

respect to contiguity. Considering dynamic variation of application behaviors, the migration layer modi- 

fies the primary task mapping to improve congestion situation. Furthermore, the routing layer balances 

utilization of wired and wireless networks by separating short-distance and long-distance communica- 

tions. Experimental results show meaningful gain in congestion control of wireless-based NoC compared 

to state-of-the-art works. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Nowadays, commercial Many-Core System-on-Chips (MCSoCs) 

re available based on Network-on-Chip (NoC) [1] communica-

ion infrastructure [2] . It is also predicted that upcoming MCSoCs

ill progressively continue operating on completely new princi-

les and novel NoC-based architectures. In comparison with the

raditional or hierarchical bus interconnection networks, mesh-

ased NoC provides more regular, scalable, and flexible framework.

lthough mesh-based NoC architecture has many advantages, its

ulti-hop nature places a negative impact on latency of the sys-

em. This will become even more challengeable when the network

ize will be increased by technology scaling. To address the above

roblem, alternative technologies such as wireless, 3D, and pho-

onic NoC have been emerged [3–5] . 
� This paper is the extension of the paper entitled “Efficient congestion-aware 

cheme for wireless on-chip networks,” presented in the Proceedings of 24th Inter- 

ational Conference on Parallel, Distributed and Network-Based Computing (PDP- 

016). 
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Since wireless NoC provides high-speed as well as high-

andwidth and flexible topology configurations, this emerging

echnology is gaining momentum to be a promising future on-chip

nterconnection paradigm. However, wireless transceivers along 

ith associated on-chip antennas impose extensive area and power

verheads into the system. Accordingly, a hybrid wireless NoC has

een proposed using both wired and wireless links [6,7] rather

han a single NoC spanning the entire system. Besides, a Hierarchi-

al Wireless NoC (HWNoC) architecture has been introduced where

he system is divided into a two-level network [8] . The wired

etwork is responsible for handling the short-distance communi-

ations, while the wireless network is capable of conducting the

ong-distance communications by almost single-hop wireless links.

lso, a Wireless Router (i.e. a router equipped with a wireless in-

erface, WR) placement has been proposed for HWNoC to allocate

ptimal number of WRs across the network [9] . 

On the other hand, NoC-based MCSoCs face fully-dynamic

orkloads where diverse applications, as sets of communicating

asks, enter and leave the system at run-time. The overall per-

ormance of a NoC-based MCSoC is in a close correlation with

etwork congestion [10] . Congestion not only increases the net-

ork latency severely [11] , but also raises the network power con-

http://dx.doi.org/10.1016/j.micpro.2017.05.014
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Fig. 1. Triple-layer model of CAP-W. 
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sumption significantly [12] . Since each WR is shared by a clus-

ter of cores, WRs are more vulnerable to congestion than Con-

ventional Routers (CRs). This becomes to a critical bottleneck es-

pecially when the number of WRs that can be integrated into a

single chip is limited due to high area and power overheads of the

WRs. Moreover, we cannot change the number and the placement

of WRs after fabricating the chip. 

Along similar lines, in this paper, a Congestion-Aware Platform

for Wireless NoC (CAP-W) is introduced in order to reduce conges-

tion in the network and especially over WRs. As shown in Fig. 1 ,

CAP-W consists of three main layers. 

Mapping layer is responsible to dynamically map the incom-

ing applications to the available (i.e. free) cores of the system. The

mapping layer consists of three main functions. First, it selects the

suitable free core as the first candidate to start mapping. Second, it

finds the suitable first task to be mapped onto the first core. Third,

it allocates other tasks with respect to contiguity. 

Migration layer considers the dynamic variation of application

behavior. It consists of three main components. First, an appli-

cation behavior prediction algorithm. Second, a cost comparison

function for initiating the task migration. Third, a task migration

controller to manage the migration process. 

Routing layer separates the wired and wireless network rout-

ing in order to balance the usability of WRs. 

The rest of the paper is arranged as follows. Section 2 addresses

backgrounds and motivations. A dynamic application mapping ap-

proach for HWNoC is presented in Section 3 . Section 4 proposes

a self-aware migration scheme for HWNoC. Furthermore, an adap-

tive routing algorithm for HWNoC is suggested in Section 5 . Lastly,

simulation results and conclusion are given in Sections 6 and 7 re-

spectively. 
. Backgrounds and motivations 

Recent growth in silicon integrated circuit technology has per-

itted the integration of tiny transceivers antennas on a single

hip, which results in introducing wireless NoC [3] . A low Tera-

ertz (324 GHz) frequency generator is realized in 90 nm CMOS

13] . Moreover a signal source operating near 410 GHz that is fabri-

ated using low-leakage transistors in a 45 nm digital CMOS tech-

ology is reported [14] . Based on these techniques, the output

ower level of the on-chip millimeter-wave generator can be as

igh as −1.4 dBm in the 32 nm CMOS technology, which is large

nough for on-chip short distance communication [15] . Following

he rule of thumb in RF design, the maximum available bandwidth

s 10% of the carrier frequency. According to this experimental esti-

ation, up to 16 channels can be available for wireless NoC in the

ange of 100 to 500 GHz. With recent developments of millimeter-

ave circuits, bandwidths of hundred GHz can be reachable. In ad-

ition to the bandwidth, wireless NoC requires low-power on-chip

ireless transceivers. Silicon Mach–Zehnder electro-optic modula-

or at data rates up to 10 Gb/s with low RF power consumption of

nly 5pJ/bit is commercially available [16] . 

Since each WR is shared by many cores, an efficient task alloca-

ion technique is required to balance the utilization of WRs and re-

uce congestion. However, as task allocation is known as NP-hard

roblem, different heuristics dealing with dynamic management of

orkload in many-core systems, such as Nearest Neighbor (NN)

nd Best Neighbor (BN) are presented [17,18] . In these heuristics,

 clustering mechanism for the first node selection is considered.

 set of cluster nodes are assumed to select the first node of the

apping algorithm among them. In another approach called Incre-

ental Approach (INC) [19] , the mapping problem is break down

nto two steps: the region selection and the task allocation. In the

egion selection step, the algorithm starts from the closest node to

he Central Manager (CM) and includes it in the region. Then, the

odes are iteratively added to the selected region trying to keep

oth the selected region and the remaining nodes contiguous. Af-

erward, in the task allocation step, application tasks are mapped

nside the selected region. Moreover, in [20] a Dynamic Application

apping Algorithm (DAMA) is presented and evaluated for HWNoC

hat is inspired by CAP-W for application mapping scheme. 

Due to significant vibration of application behaviors, even op-

imal congestion-aware task mapping may not meet the best per-

ormance, which makes some re-mapping strategies take behavior

ariation into consideration. Task migration has been traditionally

tudied in distributed systems for dynamic load balancing. How-

ver, with the increasing popularity of MCSoCs in modern em-

edded systems, task migration has also gained research attention

n this domain. By efficiently trace dynamic variation of workload

pecifications, task migration can improve overall performance of

he system. In [21] a lightweight migration mechanism for bus-

ased MCSoC is presented. The task migration method relies on

odification of program to define the checkpoints. When running

o a checkpoint, the program checks whether there is a migra-

ion request for the current task. The authors in [22] proposed a

ethodology based on virtual channels to create connections that

rovide low latency and low power paths for the task migration

ows. They adopted a 2D-mesh NoC, creating sub-meshes which

ay contain one or more cores. In [23] a task migration proto-

ol is presented. Task may be migrated at any moment, not re-

uiring migration checkpoints, and its context is also migrated.

lso, in [35] a run-time processor allocation mechanism is intro-

uced by monitoring the allocation/de-allocation of the network

odes and remapping the task based on the currently available

rocessing nodes. Furthermore, an efficient Self-Aware task Migra-

ion (SAMi) approach is proposed for NoC-based MCSoCs depend-

ng on application prediction [36] . However, the proposed task mi-
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Fig. 2. Task graph of an application with 6 tasks and 7 edges. 
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ration strategies are for conventional NoCs and not considering

ireless NoCs which our paper is targeted. 

On top of the application mapping and migration schemes,

daptive routing algorithm can also alleviate the network con-

estion. In [24] a comprehensive reference to routing algorithms

s well as discussions of advanced solutions applied to current

nd next generation of NoC-based MCSoCs is provided. When the

hortest paths are congested, sending more packets though them

orsen the congestion condition considerably. Therefore, a non-

inimal routing algorithm for NoCs that provides a wide range of

lternative paths between each pair of source and destination is

resented [25] . Moreover, a partitioning method divides the net-

ork into logical partitions. All the partitioning methods can be

upported by a deterministic routing algorithm. However, in or-

er to increase the performance, the authors in [26] proposed a

eneral minimal and adaptive routing algorithm which is based

n the Hamiltonian path and can be applied to all partitioning

ethods. Again since most of the previous routing algorithms are

argeted conventional NoCs, we propose an adaptive routing algo-

ithm based on the separation of wired and wireless networks in

rder to reduce congestion over WRs. 

. Mapping layer 

Two types of congestion can be considered from the dynamic

pplication mapping perspective: external and internal conges-

ions. External congestion happens when a network channel is

ontented by edges of different applications. To decrease external

ongestion probability, the application mapped region should be

s compact as possible and minimally fragmented. On the other

and, the internal congestion happens when a network channel is

ontended by edges of the same application. 

A directed graph, named as a Task Graph (TG), represents each

pplication in the system. Each vertex represents one task of the

pplication, while each edge stands for a communication between

he source task and the destination task as shown in Eq. (1 ). TG of

n application with 6 tasks is shown in Fig. 2 . The amount of data

ransferred from the source task to the destination task is written

n the edge. 

 t i ∈ T , ∀ e i, j ∈ E, A p = T G ( T , E ) (1)

CAP-W’s task mapping approach consists of three steps. The

rst step is to select the first node to map. The second step is pick-

ng up the first task of the application with the largest number of

dges to be mapped onto the first node, which reduces internal

ongestion probability. After all, establishing a contiguous area of

vailable nodes around the first node to map the rest of the tasks

f the application is taking into account in order to reduce the ex-

ernal congestion. In the following we present each step separately.
ithout loss of generality, we assume CM is resided to node n 0,0 

n our examples. 

.1. First node selection 

The most contiguous area is almost circular [19] . However, be-

ause adjacent regions share network links, choosing a circular re-

ion for an application in the mesh network increases the external

ongestion. As an alternative, when tasks are mapped onto a rect-

ngular region of a network with minimal routing, all packets will

e routed inside the region border and there will be no external

ongestion. The most contiguous rectangle is the square, and thus

t is preferred in CAP-W. The Square Factor (SF) of a node is the

stimated number of contiguous, almost square-shaped, available

odes around the first node. Accordingly, the suitable first node for

apping of an application would be the node with the SF equal to

he application size [27] . 

Each running application in the system is modeled as a rect-

ngle characterized by its corner nodes. Regarding the rectangle

odel of a running application, there might be some nodes within

he rectangle which do not belong to the application. In this work,

he rectangle of each application is modeled to minimize the num-

er of these nodes while to keep the model almost in the square-

haped. The rectangle models of four running applications are

hown in Fig. 3 a. For instance, the rectangle of the application 1

as two nodes which do not belong to it (n 0,2 and n 1,2 ). Also the

ectangle of the application 3 includes one node (n 6,1 ) which is not

 part of the application. However, they are the best fitting rectan-

les in order to stay close to square-shaped. 

To calculate the SF for each node: 

First, the largest square centered on the node is found, where it

ts within the mesh limits and has no overlap with other running

pplications of the system. This is shown in Fig. 3 b for the node

 7,3 which is the first node of the application 5. 

Second, there might be also some more nodes beyond the

quare borders not belonging to system rectangles, as marked with

riangle in Fig. 3 b. These nodes have one-hop distance to one of

he nodes within the square border. They are counted in order

o prevent available nodes from being isolated while keeping the

apped area close to square-shaped. 

Finally, The SF of a given node is calculated by adding the nodes

n the area of the largest square, with the available nodes beyond

he square borders. For instance, the SF for n 7,3 will be the square

rea nodes, 9, summed up with marked nodes, 5, which is 14. As

hown in Fig. 3 b, two WRs (n 4,7 and n 1,1 ) are also counted in SF

actor of n 7,3 because they have one-hop distance to the node n 7,4 

hat is inside the square border of the application. 

The first node selection algorithm of CAP-W starts from the

earest free node to CM and walks through the network to find the

ppropriate first node. It first looks for the node with the smallest

F value which is larger than or equal to the application size. Oth-

rwise, the node with the largest SF value is preferred. Note that,

hen there are two nodes with equal SF, the one closer to CM is

referred to decrease the incurred defragmentation of remaining

odes. Also, in order to reduce congestion over WRs, they are not

hosen as first node of the application by CAP-W. The two candi-

ates for the first node of the application 5 are shown in Fig. 3 b.

AP-W’s first node selection will choose the node n 7,3 because the

F factor of this node is 14 which is smaller than the node n 1,6 

ith SF factor of 15. Existing WRs, which have express paths to

ther WRs, will help the application to be mapped as contigu-

us as possible. In fact, WRs play the role of spreading contiguity

cross the whole system. Fig. 4 shows flowchart of CAP-W’s first

ode selection. 
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Fig. 3. CAP-W’s square factor calculation example. 

Fig. 4. CAP-W’s first node selection flowchart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. CAP-W’s first task selection flowchart. 

o  

n  

a  

t

 

p  

w  

n  

s  

T  

m  

n  

a  

o  

i  

t  

a

4

 

b  

T  
3.2. First task selection 

The task with the largest number of edges is selected to be

mapped onto the first node. This provides the largest possible

number of available nodes around the first task. Therefore, the

edges of the first task can be controlled by almost one-hop links,

which reduces the internal congestion probability for the first task.

If there is more than one task having the largest number of edges,

then the first task would be the one with the most intensive com-

munication. For example, in Fig. 2 , both tasks t 3 and t 2 have 3

edges. Accordingly, since the total communication weight of t 3 is

more than that of t 2 (26 vs. 22), t 3 is selected as the first task to

be mapped onto the first node. Fig. 5 demonstrates flowchart of

CAP-W’s first task selection. 

3.3. Neighborhood allocation 

After the first task is mapped onto the first node, the task map-

ping approach of CAP-W assumes the TG to be undirected and tra-

verses tasks through their predecessor tasks in the breadth-first
rder, starting from the first task. Considering the set of available

odes in the closest neighborhood of the predecessor task, tasks

re mapped onto the nodes which fit into the smallest square with

he first node. 

For example considering the application 5 in Fig. 3 b, after map-

ing the first task to the first node, which is n 7,3 , the second node

ill be randomly chosen from one of the nodes of the set A = {n 6,3 ,

 7,2 , n 7,4 , n 8,3 }. Then supposing that n 8,3 is chosen from A, the new

et for choosing the third node will be B = {n 7,2 , n 8,2 , n 7,4 , n 8,4 }.

he demonstration is illustrated in Fig. 6 . As a result, CAP-W’s task

apping approach maps the communicating tasks onto the closest

eighborhood, while keeping the mapped area as close to square

s possible. As can be seen, the application not only is mapped

nto a contiguous region without any internal congestion, but also

mposes no external congestion on its neighboring applications due

o the rectangularity of the mapped area. CAP-W’s neighborhood

llocation flowchart is shown in Fig. 7 . 

. Migration layer 

Significant variation of application behavior places an upper-

ound on improving the performance by primary task mapping.

his makes some mapping strategies take behavior variation into
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Fig. 6. CAP-W’s neighborhood allocation example. 

Fig. 7. CAP-W’s neighborhood allocation flowchart. 
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onsideration [28] . Task migration is a dynamic task re-mapping

echanism which follows real-time variation of workload behav-

or. Task migration in a HWNoC is described as transferring a task

rom the source core where it is currently running to a destina-

ion core and then resuming its execution there in such a way that

ome system performance objectives are improved. The main goal

n this paper is improving congestion. 

CAP-W’s task migration scheme consists of three parts. First, an

pplication behavior prediction algorithm. Second, a cost compari-

on function for initiating the task migration. Third, a task migra-

ion controller to manage the migration process. 

HWNoC is represented by an architecture graph AG ( C, L ). The

G contains a set of cores c i ε C, which are connected together

hrough unidirectional links l k ε L . Each c i ε C may has a running

eighted task ( t i , w i ) ε c i on it. The weight is defined as the com-

unication demand (i.e. the edge of TG in Section 3 ) of each task.

ask migration is defined as transferring the running weighted task

( t s , w s ) ε c s from source core c s ε C to destination core c d ε C and

hen resuming its execution. In the following we present each part

eparately. 
.1. Application behavior prediction 

A general approach for predicting the future is to capture the

ast behaviors. Most existing works rely on some counters for cap-

uring past behaviors because of the simplicity and low area over-

ead of such counters [29] . There are two predictors supported

y CAP-W: short-term and long-term predictors. The short-term

redictor anticipates based on the recent information stored in

 ounter i, k , where ( t i , w i ) ε c i and ( t k , w k ) ε c k are the tasks com-

unicating with each other. On the contrary, the long-term predic-

or anticipates based on the pattern of communication experiences.

he prediction function is defined as follows: 

 t ( i, k ) = 

{
A t−1 ( i, k ) , sel ( i, k ) = 0 

tabl e i,k 
(
histor y i, k 

)
, sel ( i, k ) = 1 

(2) 

Where A t ( i, k ) is the actual traffic and P t ( i, k ) is the predicted

raffic from task ( t i , w i ) ε c i to task ( t k , w k ) ε c k at the t -th interval.

lso, history i , k is the record of the communication pattern between

asks ( t i , w i ) ε c i and ( t k , w k ) ε c k while table i, k is the long-term

rediction table, in which each entry is indexed by history i, k and

ncludes a prediction rate. The prediction rate traces the amount

f data transmitted when this pattern was encountered last time.

f the same pattern appears again, the traced value is used as the

rediction rate. The anticipation either comes from the short-term

redictor or the long-term predictor, decided by a selector func-

ion sel . The selector function is designed according to the system

equirements. 

.2. Cost comparison function 

We define a trigger called Core Congestion (CC) in order to

ontrol congestion of the system. The migration starts when the

mount of packets received by a core in the network reaches the

ore congestion threshold ( th c ). The value for th c is defined adap-

ively based on the average traffic of the cores and prediction of

he application behavior. 

A cost function is needed in order to determine the best des-

ination core for task migration. For this purpose, the destination

ore is the one which has the minimum congestion among all

ther cores while satisfying the neighborhood allocation constraint

fter the task migration. (i.e. it fits into the smallest square with

he first node.) If there is more than one candidate as the destina-

ion, one of them is randomly selected. Note that the first node of

ach application is not considered for migration. Simply speaking,

ased on the application behavior and core congestion trigger, the
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Fig. 8. CAP-W’s congestion control platform. 
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migration cost function modifies the random decision that is made

in neighborhood allocation phase. 

4.3. Congestion control platform 

Basically each controller compares the system output with a

target value. After comparison, it manipulates the system actua-

tors to minimize the error. The controller policy to tune the actu-

ators strongly depends on the dynamic model of the target system

and the system robustness against error disturbance. The dynamic

model defines how the system reacts to the inputs including ac-

tuations and other inputs. The system robustness is defined as the

system stability against overshooting of the output values from the

target intended output. CM is responsible to manage the migration

process. The proposed congestion control platform for HWNoC is

depicted in Fig. 8 . 

4.1.1. Congestion meter 

Each core measures the traffic dynamically by calculating the

moving average of packet flow in every link of its router. Then,

the congestion level of each router is transferred to CM. Then,

CM sends these information to Core Congestion Meter (CCM). CCM

computes average core congestion level and sends it to the thresh-

old calculator. 

4.1.2. Threshold calculator 

Threshold Calculator (TC) calculates the amount of th c based on

the average core congestion and also prediction of the application

behavior. 

4.1.3. PID controller 

A Proportional Integral Derivative (PID) controller for actuator

manipulation is employed. The general formula for the PID con-

troller is as follows: 

P I D out ( t ) = K p e ( t ) + K i 

∫ 
e ( t ) d t + K d 

d e ( t ) 

d t 
(3)

Where PID out ( t ), e ( t ), K p , K i , and K d are the controller output,

error, proportional gain, integral gain, and derivative gain, respec-

tively. The proportional part determines how fast or aggressive the

controller reacts to changes in the input signal. The main function

of the integral part is to ensure that the process output agrees with

the set point value in steady state. The derivative part determines

how the system reacts to changes in the reference value; It also

enhances stability in the system [30] . 
.1.4. Task migration manager 

Task Migration Manager (TMM) performs the task migration

ased on the information from controller outputs and congestion

ectors. When a core marked as congested by the PID output, the

MM finds the best destination core for the task migration based

n the congestion vectors. (i.e. the cost comparison function of the

revious part). 

In order to lower the overhead of task migration strategy, it

s implemented based on MCSoC Message Passing Interface [31] ,

n which task mapping is independent of task re-mapping. By

hanging task mapping table, task is remapped to another core.

hen task state information is transferred. Hence, the migrated

ask can restore execution on a different core. The task migration

ontributes less communication overhead because task state infor-

ation excludes task code. Therefore, after choosing the destina-

ion, TMM transfers state information of the chosen task from the

ource core to the destination core. The task then resumes its ex-

cution there. Hence, remapping a task of application might not

ffect the application execution since the communication handles

hrough the message passing interface regardless of the new loca-

ion of the migrated task. 

. CAP-W routing layer 

In HWNoC, the communication can be handled by wired, wire-

ess paths or a combination of wired and wireless paths. This can

e seen as a hybrid network that has been characterized by adding

xpress paths (i.e. wireless links) to a 2D mesh NoC. Therefore,

hether the packet will take or not take the express paths is an

mportant decision to make. For network efficiency, HWNoC is par-

itioned in a way that any core within a region has the minimum

op-count towards the WR of that region than the WRs of the

ther regions. For borderline cases that one core may have the

ame hop-count from two or more WRs, the core will be randomly

ssigned to one of the candidate regions. Fig. 9 shows the parti-

ioning of 81-core HWNoC into three regions. One of the bene-

ts of partitioning is that intra-subnet communications are han-

led through wire paths while for inter-subnets communications a

unction of hop-count and congestion is used in order to select the

fficient path. 

Fig. 10 represents CAP-W’s routing algorithm. In order to bal-

nce the utilization of wired and wireless interconnections, a bal-

nce parameter called δ is added to the routing decision. The value

f δ depends on the network size and the utilization of WRs. 

= C × u (4)
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Fig. 9. CAP-W’s partitioning example. 

Fig. 10. CAP-W’s routing flowchart. 
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Fig. 11. A deadlock prone situation in CAP-W (a) Without using virtual channels (b) 

By using virtual channels. 
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As it is shown in Eq. (4 ), δ consists of two major parame-

ers: the static parameter (C) defined as the ratio of WRs to CRs

nd a dynamic parameter (u) that exponentially increases by wire-

ess link utilization. In general, the larger the network size or the

igher the link utilization is, the larger the δ. In each router, there

s a table stores and updates the δ value based on different sit-

ations. Once δ increases, lower priority will be given to wireless

inks which can help alleviating the congestion in the wireless net-

ork. 

One of the principal subjects should be addressed in networks

sing wormhole switching is the deadlock avoidance. Although us-

ng a Dimension Order Routing (DOR) like XY routing, in each of

ired and wireless networks guarantees deadlock freedom, when

ackets transmit through both wired and wireless paths, there is

 possibility of channel dependency as shown in Fig. 11 a. In order

o overcome the problem, virtual channels are taken into account.

n each input port of the routers two sets of virtual channels are

sed ( Fig. 11 b). One of them is for traffic transmission using near-
st WR while the other one is utilized for either the wired network

r traffic transmission of the WR to the destination node. 

. Experimental results 

In this section, we assess the impact of CAP-W platform on im-

roving the congestion of the system. Several set of applications

ith 4 to 35 tasks are generated using TGG [32] where the amount

f data transferred from the source task to the destination task are

andomly distributed between 4 to 16 flits of data. Also to measure

he effectiveness of the CAP-W’s routing algorithm, some applica-

ion benchmark suites selected from SPLASH-2 [33] are used. Ex-

eriments are performed using XMulator [34] an integrated sim-

lation platform for interconnection networks. Different mapping

nd first node selection methods are evaluated over the network

ize varying from 8 × 8 to 16 × 16 nodes. A random sequence of

pplications is entered into the scheduler according to the desired

ate, λ. The sequence is kept fixed in all experiments for the sake

f fair comparison. Applications are scheduled based on the First

ome First Serve (FCFS) policy and the maximum possible schedul-

ng rate is called λfull . An allocation request for the scheduled ap-

lication is sent to CM, residing in the node n 0,0 . In order to have a

olistic view of the results and enable real case comparisons, each

et of experiments are performed over ten million cycles where

undreds of applications enter and leave the system. 

.1. Evaluation metrics 

Cost of a packet delivery is related to the number of hops it tra-

erses. Hence, a metric to evaluate a mapping is the Average Man-

attan Distance (AMD) between tasks of the mapped application.

ince the communicating nodes are placed close to each other, the

maller the value of AMD is, the lower the average packet latency.

M D map ( A ) = 

∑ 

∀ e i, j ∈ E MD 

(
map ( t i ) , map 

(
t j 
))

| E | (5) 

The packet delivery cost depends not only on the length of its

ath, but also on the size of the packet. Thus, a more precise eval-

ation is to also include the weight of edges. Average Weighted

anhattan Distance (AWMD) is the sum product of Manhattan

istance (MD) and all edges’ weight of the mapped application,
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Table 1 

Latency evaluation for different mapping algorithms. 

NN [17] BN [18] INC [19] CAP-W 

AWD 1 .25 1 .30 1 .42 1 .00 

AWMD 1 .29 1 .32 1 .36 1 .00 

NMRD 1 .24 1 .62 1 .21 1 .00 

ICR 1 .52 1 .21 2 .01 1 .00 
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Fig. 12. Percentage of delivered packets in different path lengths. 

Table 2 

Time complexity of task migration scheme. 

λ ( × λfull ) 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1 

# of clock cycles 30 132 383 536 680 840 1080 

c  

p  

e  

t  

p

 

a  

t  

a  

H  

W  

c

6

 

m  

s  

t  

t  

0  

c  

r

 

c  

t  

g  

0

6

 

l  

a  

o  

c  

c  

t  

X  

fi  

l  

u  

a  

1  
averaged by the total communication weights. 

AW M D map ( A ) = 

∑ 

∀ e i, j ∈ E W i, j × MD 

(
map ( t i ) , map 

(
t j 
))

∑ 

W i, j 

(6)

To assess how contiguous the mapped region of an application

is, Mapped Region Dispersion (MRD) factor is defined that is the

mean value of all possible node pairs MD in the mapped region: 

M R D map ( A ) = 

∑ 

∀ t i , t j ∈ T M D 

(
map ( t i ) , map 

(
t j 
))

( | T | 
2 

) (7)

To decrease external congestion probability, the application

mapped region should be as compact as possible and minimally

fragmented. As it is mentioned before, the most contiguous area,

which has also the smallest MRD, is almost circular. Regarding the

mesh topology of the network, however, a circular region will gen-

erate irregularity in remaining available nodes and more area frag-

mentation in long term. On the other hand, a rectangular alloca-

tion forms regular regions, decreases applications overlap and thus

isolates their communications. Thus, the best mapped area would

be square as it is the rectangle with the smallest MRD. It can be

shown that the MRD of a square with |T| nodes will be: 

MR D SQ ( | T | ) = 

2 ×
√ | T | 
3 

(8)

Therefore, the Normalized Mapped Region Dispersion (NMRD)

metric is defined which assesses the squareness of the mapped re-

gion independent of the size of the application. NMRD increases as

the mapped area is getting more fragmented and less similar to a

square shape: 

NM R D map ( A ) = 1 + 

∣∣M R D map ( A ) − M R D SQ ( | T | ) 
∣∣∣∣M R D SQ ( | T | ) 

∣∣ (9)

On the other hand, the internal congestion occurs when a net-

work channel is contended by edges of the same application. Inter-

nal Congestion Ratio (ICR) is the number of edges of an application

using the same communication channel (according to the XY algo-

rithm) with respect to its total number of edges (|E|). Of note, we

do not count overlapped edges that are originated from the same

source. In such case, their injection is limited by source injection

rate limit and they will never contend. 

6.2. Latency evaluation 

The packet latency and values of different evaluation are sum-

marized in Table 1 . Evaluation metrics are normalized to the CAP-

 results to ease comparison. The mapping results for applications

with different packet sizes are the same, because the application

TG and system behavior remain the same. The application injection

rate is 2/3 λfull . As can be seen, CAP-W outperforms BN algorithm

by 40% and 20% reduction in external and internal congestion fac-

tors, respectively. It also obtains 50% gain over INC algorithm in

internal congestion and more than 15% in external congestion. In

addition, CAP-W has 25% gain in average for all evaluation aspects

in comparison with NN algorithm. 

As shown in [19] , decreasing MD between tasks of application

edges is an effective way to minimize the communication energy
onsumption of the application. We illustrate the percentage of

ackets that are delivered over different path lengths (MD). The

xperiments have been run for different algorithms in the injec-

ion rate of 2/3 λfull . As depicted in Fig. 12 , more than 80% of the

ackets are delivered by one hop distance using CAP-W scheme. 

In addition, Fig. 13 shows the average hop-count and the aver-

ge packet latency among the baseline NoC without any WR in-

egration, HWNoC using the XY routing and DAMA mapping [20] ,

nd HWNoC equipped with CAP-W. As it can be seen, although

WNoC with XY and DAMA outperforms the HWNoC using CAP-

 in average hop-count, it suffers from network latency caused by

ongestion over WRs. 

.3. Time complexity assessment 

The average number of clock cycles that is elapsed in CM to

ap applications with number of tasks varying from 4 to 10 is pre-

ented in Fig. 14 a. The injected rate is set to 3/4 λfull . Furthermore,

he time complexity of different mapping for applications with 8

asks is presented in Fig. 14 b, when the injection rate varies from

.4 λfull to λfull . As can be seen, CAP-W provides a reasonable time

omplexity next to NN. As it is shown in Fig. 14 , all mapping algo-

ithms scale well when the injection rate is increased. 

Furthermore, Table 2 shows the average number of clock cy-

les required for all the task migrations taken place in each injec-

ion rate. From Fig. 14 b and Table 2 , the overhead time of task mi-

ration is negligible compared to mapping time complexity, about

.1 × in the worst case scenario. 

.4. System utilization measurement 

System utilization is another important factor has been ana-

yzed among the baseline NoC, HWNoC with XY and DAMA [20] ,

nd HWNoC with CAP-W. Note that the system utilization is based

n the number of tasks that can be mapped on the cores which

ommunicate with each other without dropping due to the high

ongestion. As shown in Fig. 15 , CAP-W increases the average sys-

em utilization compared to the baseline NoC and HWNoC with

Y and DAMA. In Addition, the maximum system utilization is de-

ned as the highest percentage of the utilization during the simu-

ation time shown in Fig. 15 . CAP-W also increases the maximum

tilization compared to the baseline NoC and HWNoC with XY

nd DAMA. As can be noticed, the proposed platform cannot reach

00% utilization because area fragmentation usually occurs due to
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Fig. 13. (a) Hop-count comparison (b) Latency comparison. 

Fig. 14. Time complexity of mapping algorithms over (a) Application sizes (b) Different injection rates. 

Fig. 15. System utilization comparison. 
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he dynamic mapping policy. (i.e. when applications does not ex-

ctly fit onto the many-core system.) 

. Conclusion 

In this paper, we proposed an efficient congestion-aware plat-

orm, CAP-W, for wireless-based MCSoC. CAP-W targets at reducing

nternal and external congestions, and includes three main layers.

irst, a dynamic task mapping approach that tries to minimize con-

estion probability; Second a task migration strategy that consid-

rs dynamic variation of application behaviors; Third, an adaptive

outing algorithm that balances utilization of wired and wireless

etworks. Existing WRs, which have express paths to other WRs,

elp the system area to stay as contiguous as possible. In fact, WRs

lay the role of spreading contiguity across the whole system. Ex-

erimental results showed that CAP-W accomplish a reduced in-

ernal and external congestions as targeted. For future work, task

igration overhead can be reduced using hierarchical managing

cheme [37] . 
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