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ABSTRACT
Cyclic logic encryption is newly proposed in the area of hard-
ware security. It introduces feedback cycles into the circuit to
defeat existing logic decryption techniques. To ensure that
the circuit is acyclic under the correct key, CycSAT is devel-
oped to add the acyclic condition as a CNF formula to the
SAT-based attack. However, we found that it is impossi-
ble to capture all cycles in any graph with any set of feed-
back signals as done in the CycSAT algorithm. In this paper,
we propose a behavioral SAT-based attack called BeSAT. Be-
SAT observes the behavior of the encrypted circuit on top
of the structural analysis, so the stateful and oscillatory keys
missed by CycSAT can still be blocked. The experimental re-
sults show that BeSAT successfully overcomes the drawback
of CycSAT.

1. INTRODUCTION
In rivalry global markets era, semiconductor industry

faces serious challenges in Integrated Circuit (IC) design pro-
tection such as reverse engineering and inside foundry at-
tack [1, 7, 9, 17]. The lack of efficient IC protection schemes
may impose huge economic consequences to chip design
companies. Accordingly, logic encryption is proposed as a
protection technique to manipulate a given combinational
circuit with additional key bits to make sure that the en-
crypted circuit functions correctly only under some specific
values of those key bits.

Even though there are different encryption schemes [3, 5,
6, 8, 10], almost all of them are vulnerable to the well-known
SAT-based attack [16], which can efficiently decrypt the tra-
ditional logic encryption using a few input-output observa-
tions of an activated IC. In order to make the SAT-based at-
tack exponentially time consuming, some remedies like SAR-
Lock [19] and Anti-SAT [18] are introduced to be combined
with traditional logic encryption. However, they are vul-
nerable to a divide and conquer attack called bit-flipping at-
tack [14], and since these techniques have extremely low er-
ror rate, approximate attacks such as AppSAT [12] and Dou-
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ble DIP [15] can still decrypt the circuit by returning an al-
most correct key in polynomial time. To overcome these ap-
proximate attacks, the Error-Controlable Encryption (ECE)
scientific benchmarks [13] are developed so that the approx-
imate attacks perform no better than random guessing, and
cyclic logic encryption [11] is proposed by adding cycles to
the encryption scheme. In order to make it hard for the at-
tacker to remove cycles, all the inserted cycles should be ir-
reducible and have more than one way to open. However,
since the circuit is still acyclic under the correct key value
insertion, CycSAT [21] is proposed to incorporate a Conjunc-
tive Normal Form (CNF) formula to the original SAT-based
attack that captures the acyclic assumption.

Although CycSAT has been shown to successfully decrypt
some cyclic benchmarks, the efficiency of CycSAT relies on
its structurally-based nature. Precisely, it is not possible to
structurally capture all cycles in any graph with any set of
feedback signals. Thus in order to address the CycSAT short-
comings, we propose Behavioral SAT-based attack (BeSAT)
that utilizes the behavioral analysis to conquer the missing
cycle issue.

The paper is arranged as follows. Section 2 gives a descrip-
tive preliminary about the novel concept of logic decryption.
The limitation of CycSAT is then discussed in Section 3. In
Section 4, we introduce statefulness and oscillation, and ex-
plain how the BeSAT algorithm can overcome these two is-
sues. Moreover, the efficiency of BeSAT is shown with exper-
imental results in Section 5. Finally, Section 6 concludes the
paper.

2. PRELIMINARIES
In this section, firstly, we introduce the SAT-based attack

[16]. Then we illustrate CycSAT [21], which adds the struc-
tural analysis on the top of the SAT-based attack.

2.1 SAT-based Attack
The model of the SAT-based attack assumes that the netlist

of the encrypted circuit can be obtained, and attackers are
able to buy an activated circuit from the market, so the cor-
rect output can be evaluated. The algorithm of the SAT-based
attack is shown in Algorithm 1.
c(x , k) represents the Conjunctive Normal Form (CNF) of

the encrypted circuit with input x , key k . The SAT-based at-
tack iteratively finds the Distinguishing Input Pattern (DIP)
to differentiate two keys, since at least one of them generates
the wrong output. When a DIP x̂ i is found, its correspond-
ing output ŷ i can be evaluated by the activated circuit, and
this input-output pair is used to constrain keys by adding



Algorithm 1 SAT-based Attack
Input: The encrypted circuit c(x , k) and an activated circuit

f (x ).
Output: Correct key k∗ such that c(x , k∗) ≡ f (x ).
1: while x̂ = SAT (c(x , k1) 6= c(x , k2)) do
2: ŷ = f (x̂ );
3: c(x , k1) = c(x , k1) ∧ (c(x̂ , k1) = ŷ);
4: c(x , k2) = c(x , k2) ∧ (c(x̂ , k2) = ŷ);
5: end while
6: k∗ = SAT (c(x , k1));

(c(x̂ i , k1) = ŷ i) ∧ (c(x̂ i , k2) = ŷ i) to the existing CNF. The
CNF formula cannot be satisfied anymore when DIP cannot
be found, and the algorithm terminates. Hence, a key that
satisfies the current constraints will be returned and consid-
ered as the correct key.

The SAT-based attack can efficiently decrypt many existing
encryption techniques using only a few iterations, since all of
the wrong keys can be excluded by a small number of DIPs.

2.2 CycSAT
CycSAT holds the assumption that no structural cycle is

present in the circuit under at least one correct keys. It pos-
tulates the condition that “there is no structural cycle under
k” into a CNF of a size proportional to the size of the circuit.
With this acyclic condition incorporated into the circuit CNF,
CycSAT can leverage the original SAT-based attack to easily
solve the correct key. The pseudo-code of CycSAT is given in
Algorithm 2.

Algorithm 2 the CycSAT Algorithm
Input: The cyclic encryption circuit c(x , k) and an original

Boolean function f (x ).
Output: Correct key k∗ such that c(x , k∗) ≡ f (x ).
1: Find a set of feedback signals (w0, . . . ,wm);
2: Compute “no structural path” formulas F (w0,w ′0), . . . ,

F (wm ,w ′m);
3: NC =

∧m
i=0F (w i ,w ′i);

4: c(x , k1) = c(x , k1) ∧NC (k1);
5: c(x , k2) = c(x , k2) ∧NC (k2);
6: while x̂ = SAT (c(x , k1) 6= c(x , k2)) do
7: ŷ = f (x̂ );
8: c(x , k1) = c(x , k1) ∧ (c(x̂ , k1) = ŷ);
9: c(x , k2) = c(x , k2) ∧ (c(x̂ , k2) = ŷ);

10: end while
11: k∗ = SAT (c(x , k1));

In order to compute the acyclic condition as a CNF for-
mula, CycSAT first breaks all the cycles in the encrypted
cyclic circuit by breaking a set of feedback signals. Then for
every broken feedback w ,w ′, the formula F (w i ,w ′i) repre-
senting “there is no structural path from signal w to signal
w ′” is computed iteratively, following the topological order
from w to w ′. Finally, the condition that “there is no struc-
tural cycle under k” can be formulated by the conjunction of
all such F (w ,w ′).

3. SHORTCOMINGS OF CYCSAT
By first glance, the way of constructing the acyclic condi-

tion in the CycSAT algorithm seems fine. However, since all

the feedbacks are broken, only cycles with one feedback will
be included in the acyclic constraint. Some cycles with more
than one feedback edges can be missing in the analysis. We
use the circuit shown in Figure 1 to illustrate this scenario
and how problematic missing cycles can be. In this exam-
ple, the original circuit is an inverter and the encrypted cir-
cuit has three key inputs. If the topological order for all the
non-input signals in the encrypted circuit is (A,B ,Out ,C ),
B and C are feedback wires and will be broken in CycSAT as
shown in Figure 2. Then CycSAT will formulate the acyclic
condition NC as follows.

F (B ,B ′) = F (B ,A) ∨ F (A,B ′) = ¬k2 ∨ ¬k1

F (C ,C ′) = F (C ,B ′) ∨ F (Out ,C ′) = k1 ∨ k3

NC = F (B ,B ′) ∧ F (C ,C ′) = (¬k2 ∨ ¬k1) ∧ (k1 ∨ k3)

If we set k1 = 0, k2 = 1 and k3 = 1, the above NC con-
straint is satisfied. However, under this key input assign-
ment, there still exists a structural cycle (C ,B ,A,C ), which
contains the two feedback wires B and C .

Can we avoid missing cycles given all the feedbacks? Un-
fortunately, Chen [4] proved a strong claim as follows:

Theorem 3.1. The edges in a directed graph cannot always be
divided into two disjoint sets, such that any simple cycle is formed
by two simple paths, one composed of edges from each set.

This theorem implies that if more than one backward
edges are involved in a cycle, they possibly do not form a
simple path on this cycle, and the traversal in any topological
order of vertices ignoring these backward edges does miss
this cycle. This argument also reveals the unavoidable limita-
tion of CycSAT and tells us it is impossible to efficiently cap-
ture the condition to break all possible cycles in the cyclic en-
cryption circuit to prune out all the non-combinational keys.
It is necessary to meanwhile examine the behavior of the
cyclic circuits in order to solve the correct key as will be pre-
sented in Section 4.
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Figure 1: An example showing the limitation of CycSAT.

4. BESAT
The difficulty for CycSAT to capture all cycles in cyclic

logic encryption indicates that only the structural analysis
may not be enough. Could we propose a behavioral cyclic
decryption technique to overcome the drawback of CycSAT?
In this section, we first analyze the outcome of missing cycles
in CycSAT, then introduce BeSAT, which includes a behav-
ioral SAT-based technique to efficiently decrypt cyclic logic
encryption.
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Figure 2: A circuit with the feedback broken.

4.1 Statefulness
Let us reconsider the example in Figure 1. After the struc-

tural analysis of CycSAT, a structural cycle (C ,B ,A,C ) still
exists. We notice that under the key value k1k2k3 = 011
and the input value In = 0, Out cannot be uniquely deter-
mined. A input of the NOR gate is on the path of the cycle
(C ,B ,A,C ), so its value does not depend on In . As a result,
the output of the circuit can vary under a fixed input and key
pattern. We call this condition as statefulness, and the formal
definition of statefulness is given as follows.

Definition 4.1. Assume c1(x , k) and c2(x , k) are two copies of
an encrypted circuit. Statefulness indicates ∃ an input x̂ and a key
k̂ , s.t. c1(x̂ , k̂) 6= c2(x̂ , k̂).

we further investigate how statefulness can affect Cyc-
SAT to find the correct key value. Assume after comput-
ing the “no structural path” formula, the key assignment
k1k2k3 = 011 for both copies along with the DIP In = 0
will be found in the iteration i . Therefore, the correct out-
put “1" can be evaluated by an activated IC, and the CNF
formula (c(0, k1) = 1) ∧ (c(0, k2) = 1) is utilized to con-
strain k1 and k2. However, in the iteration i + 1, the formula
(c(0, k1) = 1)∧(c(0, k2) = 1)∧c(0, k1)∧c(0, k2)∧(c(0, k1) 6=
c(0, k2)) can still be satisfied, for the reason that the formula
(c(0, 011) = 0)∧(C (0, 011) = 1) can be satisfied by assigning
different values to the feedback. Therefore, the SAT solver
can find the same assignment of all variables in the follow-
ing iterations, and CycSAT cannot be terminated.

The above example shows that CycSAT may trap into the
infinite loop when statefulness happens. The SAT solver can
always find the same DIP, and none of wrong keys can be
pruned. Hence, CycSAT performs as bad as the original SAT-
based attack on the cyclic circuit if it cannot find all the cycles
and create the NC formula accordingly. However, if we are
able to detect statefulness, we can explicitly block the wrong
key, so the SAT solver can continue to find a new DIP. To
overcome this issue, we propose to record the DIP found by
the SAT solver in each iteration, and detect if a repeated DIP
exists. Hence, the following theorem can be proved.

Theorem 4.1. If a repeated DIP is found in an iteration of Cyc-
SAT, at least one of the keys found by the SAT solver in this itera-
tion causes statefulness.

PROOF. In CycSAT, if a DIP, x̂ , is found, the correct output
ŷ of x̂ will be evaluated by an activated IC, and the input-
output pair (x̂ , ŷ) will be used to constrain k1 and k2 by
adding C (x̂ , k1, ŷ) ∧ C (x̂ , k2, ŷ) to the existing CNF. If the
same DIP x̂ is found again by the SAT solver in the follow-
ing iterations, it indicates that when the SAT solver tries to

find the assignment of the CNF c(x̂ , k1, ŷ) ∧ c(x̂ , k2, ŷ) ∧
c(x , k1, y1) ∧ c(x , k2, y2) ∧ (y1 6= y2), at least one of the
y1 and y2 is assigned a value not equal to ŷ , and either
the CNF formula c(x̂ , k1, ŷ) ∧ c(x̂ , k1, y1) ∧ (y1 6= ŷ) or
c(x̂ , k2, ŷ) ∧ c(x̂ , k2, y2) ∧ (y2 6= ŷ) can be satisfied. By the
definition, the assignment of k1 or k2 is a stateful key since
two different outputs can be evaluated under the same input
and key pattern.

Once we detect the stateful condition, we are able to di-
rectly prune out the stateful key. To find out whether the
assignment of k1 and k2 should be pruned or not, we eval-
uate the correct output under the repeated DIP x̂ , and see if
the assignment of y1 and y2 matches with the correct out-
put. The key value that causes different outputs is a stateful
key (i.e. k̂ ), so we directly block it by adding the constraint
(k1 6= k̂) ∧ (k2 6= k̂) into the SAT formula.

The behavioral analysis can be beneficial for CycSAT to
overcome the missing cycle problem. In the example in Fig-
ure 1, under the key value k1k2k3 = 011 and the input value
In = 0, the stateful situation happens. Therefore, if the SAT
solver detects In = 0 again, the stateful key k1k2k3 = 011
can be directly pruned. As a consequence, the SAT solver
has to find new DIPs.

It should be pointed out that more than one stateful key
can be pruned if a repeated DIP is found. It is possible that
assignments of both y1 and y2 are incorrect, and we can re-
move two stateful keys in one iteration.
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Figure 3: An example showing that the value of the feed-
back may vary but cannot affect the output.

The Definition 4.1 considers if the outputs vary under a
fixed input and key value. It is also possible that with a in-
put and key pattern, the outputs are unique but some inter-
nal wires can be assigned to different values. The example in
Figure 3 reveals that, even the value of the feedback wire can
vary under k0 = 1, it cannot propagate to the output y be-
cause “1" is the controlling value of an OR gate. In this paper,
we do not count this condition as statefulness.

4.2 Oscillation
However, the undetermined feedback may cause other

problems. If we change the AND gate to a NAND gate in Fig-
ure 1, with the same assignment k1k2k3 = 011 and In = 0,
the value of the feedback inverts after the computation of the
NAND gate, and the feedback connecting to the NOR gate
oscillates between “0" and “1". consequently, the output os-
cillates.

Unfortunately, oscillation may not be that easy to be de-
tected by the SAT engine. A fixed assignment is required
for the SAT solver to provide to the CNF formula. How-
ever, if the values on some wires keep updating because of
oscillation, the SAT solver is not able to find a unique assign-
ment, and unsatisfiable will be returned. Therefore, the key



value causing oscillation meets all the requirements of the
CNF constraint, and the oscillatory key can be returned. We
define oscillation as follows.

Definition 4.2. Oscillation indicates ∃ an input x̂ and a key k̂ ,
s.t. SAT (c(x̂ , k̂)) = unsatisfiable .

To prevent oscillation, we investigate the ternary sim-
ulation combined with the Boolean satisfiability problem.
Backes et al. have proposed a ternary-based SAT method [2],
and the algorithm is as follows. First, all feedbacks are bro-
ken so that the circuit is acyclic, and dummy variables are
introduced at each cut location and assigned to ⊥, which in-
dicates that the value is unknown. Then, the circuit is ex-
pressed in terms of the ternary-based logic, and these ternary
values are further encoded as dual-rail binary values: zero is
encoded to “00”, one is encoded to “11", and the unknown
is either “01” or “10”. If the ternary value of all inputs of a
gate is known, we can apply ternary calculus to compute the
value of the outputs. For example, for a 2-input AND gate f
with inputs a and b, its ternary formula is:

f0 = a0b0 + a1b0b̄1,

f1 = a1b1 + a0b1b̄0.

In the case, each of the signals has one additional rail.
Thus, armed with ternary calculus, we can do the binary
computation as usual, and obtain the ternary value for any
signal in the circuit.

To make sure the circuit is combinational, two constraints
should be satisfied: variables computed at the cut location
should agree with the dummy variables, and the dummy
variables should not be ⊥ when the fixed point is reached.
To check if these two conditions are satisfied, two types of
function blocks have been inserted into the circuit, which are
the equivalence checker and the ⊥ detector. The equivalence
checker equals to one if the dummy variables match with the
variables at the cut location, and the ⊥ detector is simply an
XOR gate to check if “01” or “10” still exists. The SAT solver
is to find if there is an assignment for the following condi-
tions: the equivalence checking is one for all cut locations,
and there is at least one pair of dummy variables assigned to
“01” or “10”. If these conditions can be satisfied, the circuit
is considered to be non-combinational.

It is worth noting that the requirement for the circuit to be
combinational is arguably stringent, since it is possible that
some internal wires in the circuit oscillate without affecting
any primary output. However, two counterpoints can be of-
fered. First, such oscillation is a waste of power, and so is
unlikely to be present under the entire set of correct keys.
Second, Riedel et al. also mention the same question, not-
ing that the ternary SAT algorithm is easily adapted to match
such a weaker constraint if so desired [2].

Can the ternary-based SAT method be helpful to detect
and prevent oscillation? The following theorem illustrates
that the ternary-based SAT method is a strong technique to
check if there exists oscillation in the circuit.

Theorem 4.2. If the ternary-based SAT method returns un-
satisfiable on a circuit c(x , k), @ an input x̂ and a key k̂ s.t.
SAT (c(x̂ , k̂)) = unsatisfiable .

PROOF. Since the circuit becomes acyclic after breaking all
the feedbacks, all signals in the circuit c(x , k) can only be de-

termined by primary inputs, key inputs and dummy vari-
ables. Since the two rails of the primary inputs and key in-
puts are stick together, if some signals in the circuit are as-
signed to ⊥, at least one of the dummy variables must be ⊥,
which can be captured by the ⊥ detector. In this case, the
ternary-based SAT method will return satisfiable. So if the
ternary-based SAT method returns unsatisfiable on a circuit
c(x , k), it guarantees that the values of every cycle in c(x , k)
can be determined only by the input x and key k , which are
assigned with Boolean variables. As a result, oscillation will
not happen.

We adopt the ternary-based SAT method and check if the
returned key from the SAT solver will cause the circuit non-
combinational. Since there is only one unique key that can be
embedded in the circuit, we perform the ternary-based SAT
method on the circuit c(x , k̂) with a fixed key value k̂ . If the
ternary-based SAT method returns satisfiable, the circuit is
non-combinational and k̂ should be pruned. We repeatedly
find the candidate of the correct key, and use the ternary-
based SAT method to check oscillation until it returns unsat-
isfiable.

4.3 BeSAT Algorithm
The algorithm of BeSAT is then can be developed as shown

in Algorithm 3. First, we generate the “no structural path”
formula, and its CNF formula is added into the existing con-
straint. Then, we conduct the behavioral analysis. For each
iteration, BeSAT checks if the SAT solver finds the repeated
DIP, and directly block stateful keys that prevent the algo-
rithm from termination. When the SAT solver cannot find
any DIP, we consider all the key values that satisfy the cur-
rent CNF constraint as candidates of the correct key, and
we use the ternary-based SAT method to verify. Once the
ternary-based SAT method returns unsatisfiable, the key is
returned and considered to be correct.

Theorem 4.3. When BeSAT terminates and returns a key value,
the returned key is guaranteed to be correct.

PROOF. Since wrong keys that lead to an acyclic circuit
can be pruned by simply adding key constraints, it is equiv-
alent to prove that if the stateful and oscillatory keys are
missed by the “no structural path” formula, they can still be
detected and pruned by BeSAT.

Assume that when the algorithm terminates, there is a
missing stateful key. By the definition of the statefulness, the
SAT solver can still find a DIP so that k1 and k2 are both
assigned to the stateful key, and diverse outputs can be pro-
duced. Therefore, the algorithm cannot be terminated, which
contradicts to our assumption. So when the SAT solver can-
not find any DIP, all the stateful keys can be pruned.

The ternary-based SAT method then tries to find a key
so that the circuit cannot oscillate for all possible inputs. It
adopts a stringent definition that no ⊥ values can persist in
the circuit. As Theorem 4.2 proved, if the ternary-based SAT
method returns unsatisfiable, it is guaranteed that there is no
oscillation in the circuit under this key.

5. EXPERIMENTAL RESULTS
In this section, we evaluate the correctness and the effi-

ciency of BeSAT. Our experiment is conducted on a machine
with 2.4 GHz Intel Core i5, running Linux with memory 5.4



Table 1: BeSAT, CycSAT and the SAT-based attack on cyclic encryption of original circuits, with 10 intentional feedbacks of
cycle lengths 10.

cyclic encrypted circuits CycSAT SAT−based attack BeSAT
circuit #primary

inputs
#key
inputs

#outputs #gates #cycles key #iterations key #iterations key #iterations

apex2 39 20 3 600 20 yes 4 no − yes 4
apex4 10 20 19 5380 20 yes 3 no − yes 3
c432 36 20 7 180 20 no − no − yes 17
c499 41 20 32 222 20 yes 3 yes 8 yes 4
c880 60 20 26 403 20 no − no − yes 19
c1355 41 20 32 566 20 yes 25 no − yes 28
c1908 33 20 25 900 20 yes 34 yes 167 yes 8
c2670 233 20 140 140 20 no − no − yes 32
c3540 50 20 22 1689 20 no − no − yes 31
c5315 178 20 123 2327 20 no − yes 15 yes 14
c7552 207 20 108 3532 20 no − no − yes 5
dalu 75 20 16 2318 20 yes 16 yes 9 yes 12
des 256 20 245 6493 20 yes 5 no − yes 5
ex5 8 20 63 1075 20 yes 11 no − yes 11
ex1010 10 20 10 5086 20 yes 3 no − yes 3
i4 192 20 6 358 20 yes 3 no − yes 3
i7 199 20 67 1335 20 yes 7 yes 6 yes 7
i8 133 20 81 2484 20 yes 8 yes 7 yes 8
i9 88 20 63 1055 20 yes 3 yes 11 yes 4
k2 46 20 45 1835 20 no − no − yes 37
seq 41 20 35 3559 20 yes 5 no − yes 5

GiB. We perform BeSAT on two types of benchmarks: bench-
marks encrypted with only the cyclic logic encryption, and
benchmarks encrypted with both the traditional logic en-
cryption and the cyclic encryption. The cyclic encrypted cir-
cuits are from Zhou et al. [21], and original acyclic bench-
marks are from the ISCAS’85 and the Microelectronics Cen-
ter of North Carolina (MCNC). The method proposed by
Shamsi et al. [11] is adopted as the cyclic logic encryption
technique, which creates irreducible loops with multiple re-
movable edges in circuits so that the attack difficulty is in-
creased. It can be proved that with M edges and N loops in
the cyclic encryption circuit, the attack complexity can be ex-
ponential as 2M×N [11]. Extra multiplexers are also inserted
into the encrypted circuit at the feedbacks of cycles to ensure
the cycles are irreducible.

We use the traditional logic encryption technique pro-
posed by Dupuis et al. [5], which inserts AND and OR gates
into the circuit so that the number of low-controllability loca-
tions is minimized. The benchmarks in the experiment have
10 percent area overhead of the traditional logic encryption,
and we select two advanced logic decryption techniques, the
SAT-based attack and CycSAT, as comparison. Although
there are many other encryption techniques such as Anti-
SAT [18] and SFLL [20], they are not related to cyclic logic
encryption, so we do not include them in the experiment.
Meanwhile, We did not discuss removal or side channel at-
tacks since they have been shown to be ineffective on cyclic
logic encryptions by Shamsi et al. in [12].

We evaluate BeSAT on encrypted benchmarks with 10 in-
tentional feedbacks of cycle lengths 10. The result is illus-
trated in Table 1. The “key” indicates whether the key values
are correct or not, and “-” means the logic decryption tech-
niques do not terminate because of infinite or exponential
loops. If the process of the decryption can be complete, the
numbers of iterations that each logic decryption technique
takes are shown in the table. We notice that the original SAT-
based attack has the worst performance among these three

techniques, since most of the encrypted benchmarks cannot
be decrypted because of the infinite loop. Meanwhile, the
CycSAT can solve the correct key for most of benchmarks in
a few iterations, but there are still 33% benchmarks cannot be
decrypted. However, the BeSAT is able to successfully attack
all of benchmarks, and it takes no more than 37 iterations
to finish. It should be mentioned that the SAT-based attack
may perform better than CycSAT or BeSAT due to the diverse
selection of DIPs by a SAT solver. Meanwhile, benchmarks
such as C5315 can be defeated by SAT-based attack because
the inserted cycles do not produce non-combinational behav-
ior. However, when cycles are carefully inserted and the hard
cycle shown in Figure 1 are added, neither CycSAT nor the
SAT-based attack can defeat it, only BeSAT has a chance.

To further investigate if the traditional logic encryption in-
creases the attack complexity for BeSAT, we perform BeSAT
and CycSAT on benchmarks encrypted with both cyclic and
traditional encryption. The result is shown in Figure 4 and 5.
We set 13000 iterations as the threshold to illustrate that the
decryption cannot be finished within 24 hours. Overall, Be-
SAT and CycSAT take similar numbers of iterations to com-
plete. However, BeSAT can decrypt more cyclic encrypted
benchmarks than CycSAT.

6. CONCLUSION
Recently, cyclic logic encryption [11] is proposed as a

newly encryption technique to defeat many existing attacks,
since it introduces dummy cycles into the circuit, which
can lead to statefulness and oscillation. Even though Cyc-
SAT [21] is proposed to carefully compute the formula that
there is no structural path under a key, we noticed that it is
impossible to capture all cycles in any circuit with any set
of feedback signals in such a way. In order to overcome the
drawback of CycSAT, we propose BeSAT, which brings in the
behavioral analysis to overcome the challenge that CycSAT
may miss cycles. The experimental result indicates BeSAT



Algorithm 3 the BeSAT Algorithm
Input: The cyclic encryption circuit c(x , k) and an original

Boolean function f (x ).
Output: Correct key k∗ such that c(x , k∗) ≡ f (x ).
1: Find a set of feedback signals (w0, . . . ,wm);
2: Compute “no structural path” formulas F (w0,w ′0), . . . ,

F (wm ,w ′m);
3: NC =

∧m
i=0F (w i ,w ′i);

4: c(x , k1) = c(x , k1) ∧NC (k1);
5: c(x , k2) = c(x , k2) ∧NC (k2);
6: DIP = {};
7: while x̂ , k̂1, k̂2 = SAT (c(x , k1) 6= c(x , k2)) do
8: ŷ = f (x̂ );
9: if x̂ in DIP then

10: if c(x̂ , k̂1) 6= ŷ then
11: c(x , k1) = c(x , k1) ∧ (k1 6= k̂1);
12: c(x , k2) = c(x , k2) ∧ (k2 6= k̂1);
13: if C (x̂ , k̂2) 6= ŷ then
14: c(x , k1) = c(x , k1) ∧ (k1 6= k̂2);
15: c(x , k2) = c(x , k2) ∧ (k2 6= k̂2);
16: DIP .add(x̂ );
17: c(x , k1) = c(x , k1) ∧ (c(x̂ , k1) = ŷ);
18: c(x , k2) = c(x , k2) ∧ (c(x̂ , k2) = ŷ);
19: end while
20: while k̂c = SAT (c(x , k1)) do
21: if ternary_SAT (c(x , k), k̂c) == SAT then
22: c(x , k1) = c(x , k1) ∧ (k1 6= k̂c);
23: else
24: k∗ = k̂c, break;
25: end while
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Figure 4: CycSAT vs. BeSAT on benchmarks encrypted
with 5 intentional feedbacks of cycle lengths 5.

can efficiently solve the correct key value of cyclic encrypted
benchmarks.

Acknowledgments
This work is partially supported by NSF under CNS-1441695,
CCF-1533656, and CNS-1651695.

7. REFERENCES
[1] M. Abramovici and P. Bradley. Integrated circuit security: new

threats and solutions. In Workshop on Cyber Security and
Information Intelligence Research, page 55, 2009.

[2] J. Backes, B. Fett, and M. D. Riedel. The analysis of cyclic
circuits with boolean satisfiability. In ICCAD, pages 143–148,

1	

10	

100	

1000	

10000	

100000	

ap
ex
2	

ap
ex
4	

c1
35

5	

c1
90

8	

c2
67

0	

c3
54

0	

c4
32

	

c4
99

	

c5
31

5	

c7
55

2	

c8
80

	

da
lu
	

de
s	

ex
10
10
	

ex
5	 i4
	

i7
	

i8
	

i9
	

k2
	

se
q	

#	of	Iterations	vs.	Benchmarks		

BeSAT	 CycSAT	

Figure 5: CycSAT vs. BeSAT on benchmarks encrypted
with 20 intentional feedbacks of cycle lengths 5.

2008.
[3] A. Baumgarten, A. Tyagi, and J. Zambreno. Preventing ic

piracy using reconfigurable logic barriers. IEEE Design and
Test, 27(1), 2010.

[4] R. Chen and H. Zhou. Statistical timing verification for
transparently latched circuits. IEEE TCAD, 25(9), 2006.

[5] S. Dupuis, P. S. Ba, G. D. Natale, M. L. Flottes, and B. Rouzeyre.
A novel hardware logic encryption technique for thwarting
illegal overproduction and hardware trojans. In IEEE
International On-Line Testing Symposium, pages 49–54, 2014.

[6] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri. Security
analysis of logic obfuscation. In DAC, pages 83–89, 2012.

[7] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri. Security
analysis of integrated circuit camouflaging. In CCS, pages
709–720, 2013.

[8] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino,
O. Sinanoglu, and R. Karri. Fault analysis-based logic
encryption. IEEE Transactions on Computers, 64(2), 2015.

[9] A. Rezaei, Y. Shen, S. Kong, J. Gu, and H. Zhou. Cyclic locking
and memristor-based obfuscation against cycsat and inside
foundry attacks. In DATE, pages 85–90, 2018.

[10] J. A. Roy, F. Koushanfar, and I. L. Markov. EPIC: Ending piracy
of integrated circuits. In DATE, pages 1069–1074, 2008.

[11] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Pan, and Y. Jin. Cyclic
obfuscation for creating SAT-unresolvable circuits. In
GLSVLSI, pages 173–178, 2017.

[12] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin.
AppSAT: Approximately deobfuscating integrated circuits. In
HOST, pages 95–100, 2017.

[13] Y. Shen, A. Rezaei, and H. Zhou. A comparative investigation
of approximate attacks on logic encryptions. In ASP-DAC,
pages 271–276, 2018.

[14] Y. Shen, A. Rezaei, and H. Zhou. Sat-based bit-flipping attack
on logic encryptions. In DATE, pages 629–632, 2018.

[15] Y. Shen and H. Zhou. Double dip: Re-evaluating security of
logic encryption algorithms. In GLSVLSI, pages 179–184, 2017.

[16] P. Subramanyan, S. Ray, and S. Malik. Evaluating the security
of logic encryption algorithms. In HOST, pages 137–143, 2015.

[17] R. Torrance and D. James. The state-of-the-art in
semiconductor reverse engineering. In DAC, pages 333–338,
2011.

[18] Y. Xie and A. Srivastava. Mitigating SAT attack on logic
locking. In CHES, pages 127–146, 2016.

[19] M. Yasin, B. Mazumdar, J. J. Rajendran, and O. Sinanoglu.
SARLock: SAT attack resistant logic locking. In HOST, pages
236–241, 2016.

[20] M. Yasin, A. Sengupta, M. Nabeel, M. Ashraf, J. J. Rajendran,
and O. Sinanoglu. Provably-secure logic locking: From theory
to practice. In CCS, pages 1601–1618, 2017.

[21] H. Zhou, R. Jiang, and S. Kong. Cycsat: Sat-based attack on
cyclic logic encryptions. In ICCAD, pages 49–56, 2017.


