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Abstract—Logic encryption, a method to lock a circuit from unau-
thorized use unless the correct key is provided, is the most important
technique in hardware IP protection. However, with the discovery
of the SAT attack, all traditional logic encryption algorithms are
broken. New algorithms after the SAT attack are all vulnerable to
structural analysis unless a provable obfuscation is applied to the
locked circuit. But there is no provable logic obfuscation available,
in spite of some vague resorting to logic resynthesis.

In this paper, we formulate and discuss a trilemma in logic encryp-
tion among locking robustness, structural security, and encryption
efficiency, showing that pre-SAT approaches achieve only structural
security and encryption efficiency, and post-SAT approaches achieve
only locking robustness and encryption efficiency. There is also a
dilemma between query complexity and error number in locking.
We first develop a theory and solution to the dilemma in locking
between query complexity and error number. Then, we provide a
provable obfuscation solution to the dilemma between structural
security and locking robustness. We finally present and discuss some
results towards the resolution of the trilemma in logic encryption.

1. INTRODUCTION

Logic encryption (aka logic locking or logic obfuscation)
has been proposed over many years, as an effective IP pro-
tection technique that modifies a given logic circuit with the
introduction of a set of key inputs. Traditional approaches to
logic encryption [1, 18, 5, 14, 15, 10, 25, 16] were all based
on ad-hoc approaches to select a subset of internal signals in
the original circuit to be modified by key-bits. An example is
shown in Figure 1. Please observe that in such approaches, the
original circuit structure had not been hidden from the attacker,
and the protection depends mainly on the attacker’s assumed
incapability to figure out the correct polarities on the selected
signals.
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Fig. 1. Traditional logic encryption example: gray gates are lock gates.
However, such assumptions had been shown to be invalid

with the success of the SAT-based attacks on almost all of
the traditional approaches [23]. The main idea of the SAT-
based attack is to use a “miter” circuit (two copies of the
encryption circuit with the same primary inputs and different
primary output) to identify a primary input value that can
still differentiate the two circuits. Then the correct input-output
relation from a query to the functioning circuit is used to add
a constraint on both key inputs in the “miter”. Its effect is to
remove the wrong keys with effect on that input. Only correct
keys are remaining in the constraints if the two copies cannot
be differentiated. The pseudo-code of the SAT-based attack is
given in Algorithm 1. The power of the SAT-based attack lies
on the fact that many a query removes a large number of
wrong keys.

Algorithm 1 SAT-Based Attack
Input: An encryption circuit g(x , k) and the oracle access to

the target f (x).
Output: Correct key k∗ such that g(x , k∗) ≡ f (x).

1: while x̂ = SAT(g(x , k) ≠ g(x , k1)) do
2: ŷ = f (x̂);
3: g(x , k) = g(x , k) ∧ (g(x̂ , k) = ŷ);
4: g(x , k1) = g(x , k1) ∧ (g(x̂ , k1) = ŷ);
5: end while
6: k∗ = SAT(g(x , k));

After the SAT-based attack, many different defenses have
been proposed [29, 28, 26, 32, 31, 20, 30, 13, 17, 19, 27]. A
contrasting feature of all these post SAT-attack solutions from
the traditional solutions is that, the logic encryption now shifts
its attention to the design of the difference logic. The difference
logic is defined as the difference (XOR) of the encryption
circuit and the original circuit, and thus is a Boolean function
of primary inputs and key inputs. Different from traditional
solutions (where the difference logic is a by-product of internal
signal modifications and thus hard to know), a well-designed
difference logic can guarantee that an exponential number of
inputs are needed in order to remove all wrong keys.

However, making the difference logic explicit introduces a
structural vulnerability in the design; the difference logic has
to be XORed with the original circuit to form the encryption
circuit. Therefore, without structural obfuscation, the original
circuit lays exposed for piracy. This can be easily seen in
Figures 4 and 5 in the next section. However, obfuscation, as
a technique against structural analyses, is very hard, since it is
impossible to exhaust structural analyses. Even though we can
show that resynthesis is a viable way to obfuscation, conven-
tional synthesis tools were mainly engineered for optimization
and thus are not suitable for this purpose.

We can identify three requirements in logic encryption: lock-
ing robustness, structural security, and encryption efficiency.
The locking robustness is measured by the number of required
queries to the functioning circuit (oracle) in order for find the
correct key. The structural security is measured by the required
time to find out the target circuit through structural analysis
of the encryption circuit. The encryption efficiency is given by
the length of the key and the overhead of the size and delay
in the encryption circuit.

There is a trilemma in logic encryption among locking robustness,
structural security, and encryption efficiency. All existing solutions
have achieved at most two of these requirements. For exam-
ple, all pre-SAT approaches have achieved structural security
and encryption efficiency, through direct locking of internal
signals in the target circuit. They are structurally secure since
no vulnerable locking structure is introduced, and efficient
because the key length and overhead are small. However, SAT
attack demonstrated that they are not robust in locking. On
the other hand, all post-SAT approaches have to explicitly
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design the locking logic via the difference logic. With an
efficient explicit difference logic, both locking robustness and
encryption efficiency are achieved. But, the logic encryption
given by XORing the original circuit with the difference logic
is unavoidably vulnerable by structural analysis.

Most post-SAT solutions, especially the earlier ones includ-
ing SARLock [28], Anti-SAT [26], and TTLock [30], have very
low error rate for any wrong key. These designs are vul-
nerable to approximate attacks such as Double-DIP [22] and
AppSAT [21], or the bypass attack []. We will first examine
the dilemma beween query complexity and error number, and
provide solutions achieving the best trade-off between them.

All post-SAT solutions are structurally vulnerable and re-
quest obfuscation for protection. However, there is no viable
solutions to obfuscation in spite of some vague resorting to
logic resynthesis. Here, we investigate the dilemma between
structural security and locking robustness, and develop for
the first time a solution to the logic obfuscation, based on the
concept of universal circuit. We acknowledge that our solution
achieves structural security and locking robustness, but lacks
encryption efficiency.

We have illustrated the trilemma of logic encryption in
Figure 2, with both existing and proposed solutions placed in
corresponding positions. In summary, we develop the theory
and solutions to the dilemma of query-error trade-off in logic
locking. Based on it, we also develop the obfuscation theory
and solutions to the dilemma of structural security and locking
robustness. We also provide some partial results towards the
holy grail of logic encryption, achieving all three requirements
in the trilemma.
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Fig. 2. The trilemma among locking robustness, structural security, and
encryption efficiency in logic encryption, and the situations of existing
and proposed (in bold italic) solutions.

The remaining of the paper is organized as follows. In Sec-
tion 2, the attack model will be formally defined and discussed.
In Section 3, the logic locking subproblem will be studied
without considering structural security. A theory showing the
dilemma between query complexity and error number will
be developed, and efficient lockings with the best trade-off
between query complexity and error number will be designed.
In Section 4, Our focus will then be shifted to structural
obfuscation, the harder subproblem of logic encryption. The
difficulty mainly comes from the fact that it is impossible
to exhaust all possible structural analyses on a circuit. We
will first formulate the problem as indistinguishability Logic
Obfuscation (iLO), and then provide provable solutions based

on the concept of universal circuits [24, 8].
With a symptomatic size of O(n logn), the universal cir-

cuit based solutions might be considered efficient in theory.
However, for practical deployment, our criterio for encryption
efficiency must be higher. The holy grail of logic encryption
should target a size overhead below the original circuit size
and a key length at most twice of the input length. We will
present our efforts in pursuing the holy grail in Section 5.

2. ATTACK MODEL AND THE TRILEMMA OF LOGIC
ENCRYPTION

In this section, we are going to review the brief history
of logic encryption, discuss various scenarios and implied
requests in hardware IP protection, then define the corre-
sponding general attack models, and formulate the related IP
protection problems. It is our contribution to identify logic
locking and structural obfuscation as two separate subgoals of
logic encryption. Through a thorough discussion on different
IP protection scenarios, we plan to re-define logic locking, logic
obfuscation, and logic encryption as subtly different problems
in IP protection. Please note these terms are currently used
interchangeably in the existing research literature.

2.A. IP PROTECTION SCENARIOS AND REQUESTS

Our paper will start by re-examining different scenarios in
hardware IP protection. We emphasize that IP protection is not
just one problem but a range of various problems. This can be
demonstrated by comparing the IP protection against a novice
and that against an expert.

The former scenario has been the one targeted by the tradi-
tional logic encryption. As discussed in the previous section,
the traditional approaches had all selected a subset of internal
signals in the original circuit to be modified by the key bits.
Since most parts of the original circuit were exposed except the
polarities of the selected signals, the attacker must be assumed
to know nothing about the circuit, not even its functionality. It
is equivalent to say that the attacker is a novice.

Now consider the scenario where the attacker is an expert,
for example, as a competitor of the target hardware. In this
case, the attacker may already know the functionality of the
target circuit, may even have a design that is slightly inferiors
to the target design. Therefore, the exposure of most parts
of the original circuit has already leaked invaluable design
information to the attacker. Furthermore, since the attacker
already knows the functionality, there is no need to query the
functioning circuit.

Based on the discussion, it can be claimed that not only the
traditional logic encryption but also all the logic encryption
after the SAT-based attack are for IP protection against a novice.

2.B. ATTACK MODELS AND IP PROTECTION PROBLEMS

The paper will study a variation of different attack models.
In addition to different prior knowledge and target information
as discussed in previous section, an attack model will also
include the limit of the attacker’s capability in action. Our
preliminary study has identified logic analysis and structural
analysis as two important aspects in the attacks on logic
encryption. However, nothing can forbidden an attacker from
combining logic and structural analyses in sophisticated ways.

We want to illustrate such a sophisticated way of attack with
an example of a very new logic encryption approach called
SFLL (Stripped Function Logic Lock) [30]. SFLL is generally
viewed by the community as the most advanced and thus
perhaps the most secure approach to logic encryption (or



locking). Recall that approaches after the SAT-based attack
have to design the difference logic and then XOR it with the
original circuit. The usual way to ensure that the difference
logic not only produces errors but also has a correct key is to
mask one key value from producing errors. SFLL has moved
one step forward by moving the mask from the difference logic
into the original circuit. In other words, it first does the same
difference on the original circuit but with the keys fixed at
specific values, then the difference logic is applied (i.e. XORed)
to the modified circuit (named SF). The comparison between
SFLL and other post-SAT logic encryption is shown in Figure 3.
Even though it still requests a resynthesis to obfuscate the SF
circuit, a benefit of SFLL is that the outer difference logic can
be left visible without worrying its removal.
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Fig. 3. Comparison between SFLL and other post-SAT logic encryp-
tions.

A main difference logic proposed in SFLL is the constant
Hamming distance function, that is, a difference will be pro-
duced if the distance of the key k and the input x is the given
constant, denoted as H (k , x) = c. Our attack assumes that one
of the modified inputs x̂ has been encountered (which is a
reasonable assumption since a locking never producing any
error is tantamount to no locking). It means that we know
H (k∗, x̂) = c. Now there is a linear time algorithm with
queries to the functioning circuit to find k∗. Denote by
x̂ [i , j ] the same x̂ except that the i th and j th bits are flipped.
Querying the functioning circuit on x̂ [0, i] for i = 1 to n−1 and
comparing with the results on SF circuit will tell us whether
H (k∗, x̂ [0, i]) = c. It will partition the bit indices into two
groups, with index 0 in the group satisfying the equation. It
can be shown that at least one group has exactly c members.
Denoting this group by C , we can show that x̂ with all the
bits indexed by C flipped must be k∗. It is important to
observe here that the queries to the functioning circuit are
well structured, and the results are used in organized ways
with structural analysis, much differently from the SAT-
based attack.

Our paper will study the novice attacker model at one
end of the spectrum, where the attacker is assumed to know
nothing about the protected circuit and its target is to find
out the correct key. In the scope of attack capabilities, we
plan to consider logic analysis, structural analysis, and any
combinations of them. Notice that an attack model with only
logic analysis is no longer valid after the SAT-based attack.
All attack models considered in this paper will include struc-
tural analysis. However, capturing the capability of structural
analysis and especially that of combined structural and logic
analyses will be one of the biggest challenges to be overcome.

3. THEORY AND SOLUTION TO QUERY-ERROR DILEMMA

3.A. CONTENTION BETWEEN QUERY COMPLEXITY AND
ERROR

Since each iteration of the SAT-based attack is to find an
input that can differentiate two keys on g(x , k) and then to
constrain the keys by the evaluation of that input on the

original circuit f (x), we start our investigation by a Shannon
decomposition of the encryption circuit g(x , k) on the input x .
It gives us the following equation:

g(x , k) = ⋁
2n−1
i=0 m i(x) ∧ g(i , k),

where m i(x) is the i th minterm of x , and g(i , k) is Boolean
function of only k .

Besides the attack complexity, another design criteria of
encryption circuit is the error rate. For any wrong key, the error
rate is the ratio of inputs generating wrong outputs. In other
words, the error rate is the error number divided by the total
number of possible inputs (2n ). All existing remedies [28, 26]
against the SAT-based attack have extremely low error rate:
2−n . Therefore, an interesting problem to investigate is whether
there could be logic encryptions that have both exponential
SAT attack complexity and substantial error rates.

In our system, the error number for k is given by

error(k)
∆
= ∑

2n−1
i=0 g(i , k) ≠ f (i).

More importantly, we can view the logic encryption design as
to determine the following error matrix.

(g(x, k) ≠ f(x)) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1 . . . 0 . . . 0 . . . 1 x=0

⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮

0 . . . g(i, j) ≠ f(i) . . . 0 . . . 1 i
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮

1 . . . 1 . . . 0 . . . 0 2n − 1
k=0 . . . j . . . k∗ . . . 2m − 1

Each row represents a given x value from 0 to 2n−1, and each
column represents a given k value also from 0 to 2m − 1. The
element at (i , j ) represents the value of g(i , j ) ≠ f (i), that is, an
error at g(i , j ). The error number for k is the number of ones in
column k . The minimal error number is the minimal number
of ones in any column with one. On this error matrix, the
decryption problem can be formulated as a covering problem:
a subset of rows (inputs x ) are sufficient if and only if they
cover all the columns with ones.

Such a unate covering as optimization problem is well
studied in logic synthesis [9]. It is also known as the set cover,
hypergraph covering, hitting set, or hypergraph traversal problem.
However, our goal here is not optimization. We want to design
a matrix such that the minimal number of ones for any column
with one is large, while the number of rows needed to cover
them is also large. If the minimal error number is M , any error
number larger than M on any key will only decrease the attack
complexity. Therefore, we will first focus on a setup where
every wrong key has exactly M errors. We call it the uniform
error number logic encryption. The corresponding hypergraphs
are called M-graphs where each hyper-edge has M vertices.

The minimal cover of the M -graph corresponding to the
error matrix provides a lower bound on the attack complexity,
even though achieving such a lower bound is almost impossi-
ble. Since we are looking for a design to maximize the attack
complexity, we are interested in an M -graph that maximizes its
minimal cover. However, Alon [2] has shown that the cardinal-
ity of the minimal cover for any M -graph is upper bounded by
(1+ o(1)) lnM

M
(2n + 2m), and Chvátal and McDiarmid [6] have

given another upper bound of (2n + ⌊M /2⌋2m)/⌊3M /2⌋. These
results indicates that there is a natural contention between the
minimal attack complexity and the minimal error number in



the logic locking.
Since it is extremely unrealistic to expect that the SAT-based

attack will discover the minimal cover in the matrix, let us
investigate whether we can escape from this contention if the
average attack complexity is considered instead of the minimal
attack complexity. Unfortunately, we cannot do much, because
of the following lemma.

Lemma 1: In any given encryption g(x , k) for any function
f (x), if the minimal error number for any wrong key is M , then
m2n/M random DIP queries will decrypt it with a probability
at least 1 − (2/e)m .
Proof. We will consider a sequence of N independent random
selection of rows and to calculate the probability that they
are still not a cover. Please note that a DIP selection in SAT-
based attack is dependent on existing selections and also no
repeated selection is allowed. Therefore, such a probability
for independent random selection is an upper bound of the
probability for dependent DIP selections.

Now consider each column with one in it. It must have at
least M ones. Therefore, an independent random selection of
a row will not cover it with a probability at most 1−M /2n . A
sequence of N selections will not cover it with a probability
at most (1 −M /2n)N . There are at most 2m − 1 such columns,
thus, such selections will not form a cover with a probability
at most 2m(1 −M /2n)N . It can be shown that (1 −M /2n)2

n /M

is monotonically increasing and converges to e−1. Therefore, if
N = m2n/M , then

2m(1 −M /2n)N ≤ 2me−m = (2/e)m .

3.B. THE BEST QUERY-ERROR TRADE-OFF

Fortunately, we can show that there does exist an encryption
with both high attack complexity and high error numbers. The
following lemma is just a direct application of the results in
hypergraph covering [2, 6].

Lemma 2: For any given f (x), there exists a logic encryption
g(x , k) with M as the minimal error number whose minimal
attack complexity is close to the bounds given by Alon [2] and
Chvátal and McDiarmid [6].

But such a construction based on hypergraph is totally
impractical, since the provided g(x , k) most possibly must
have exponential circuit size. The more important problem is to
find such a circuit with a small size. Based on our theory, each
function g(i , k) = f (i) has to distinguish (thus to exclude) an
exponential number of minterms. The request of small size on g
forbids one different block for every g(i , k) = f (i), otherwise
there will be exponential number of blocks. Without loss of
generality, let g(0, k) = (mk∗ +h(k)) ≡ f (0) be the block shared
by every g(i , k) for i ∈ 0..2n − 1. A good (or perhaps the
best) way to get distinguished minterms from each g(i , k) is
to modulate k in h(k) bit-wisely by i , that is, to make

g(i , k) = (mk∗ ∨ h(k ⊕ i)) ≡ f (i).

In this case, we can have a general design as shown in Figure 4,
which is also given by the following formula,

g(x , k) = (mk∗(k) ∨ h(k ⊕ x)) ≡ f (x).

Its correctness is stated in the following theorem.
Theorem 3: If function h ∶ Bn

→ B has an on-set of size
M , then the logic encryption given in Figure 4 will have an
error number of M for every wrong key, and a minimal attack
complexity at least 2n/M .

A simple design following the general scheme is to have
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xn-1
kn-1
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k!=k*

Fig. 4. A general logic encryption scheme where h(v) has an on-set of
size M.
h(v) = ⋀

n/2−1
i=0 v2i ⊕ v2i+1, as shown in Figure 5. It can be seen

that the on-set of the h function in this design is 2n/2. Therefore,
it has 2n/2 as the error number for every wrong key and at least
2n/2 for the minimal attack complexity.
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Fig. 5. A simple logic encryption design with both exponential attack
complexity and error number.

3.C. INSERTION OF ONE-WAY FUNCTION

Increasing the number of necessary iterations in the SAT-
based attack is just one way to increase the attack complexity.
Another way is to increase the complexity of SAT instances in
the DIP finding. For this purpose, we need to look for hard
instances for SAT problem and integrate them into the logic
encryption circuit. Cryptography is one of the promising areas
to look for hard SAT instances.

Similar ideas have been proposed and discussed by Yasin
et al. [29] and cited by Xie and Srivastava [26]. However, they
only proposed to use AES as the hard instance. It is well known
that AES is a complicated algorithm, with at least 10 cycles of
repetition even for the smallest 128-bit key configuration. To
be used in the encryption circuit, which is a combinational
circuit, the AES has to be unrolled to make it combinational,
which will definitely increase its size. The result in [29] only
showed the execution time of the attack, but not the circuit size
of inserted AES. But it can be estimated that AES will introduce
substantial overhead on the circuit size.

We advocate here to use Goldreich’s candidate one-way
functions based on expander graphs [12] as the hard instances
inserted in logic encryptions.

Goldreich’s one-way functions are easy to construct. There
are two parameters to select: a connection degree d and a
predicate P on d inputs. For any n-bit inputs, the one way
function will compute each bit of its output by applying P on
a random selection of d input bits. There are some criteria to
follow: P should not be linear sum or degenerate on the inputs;
if the connection between inputs and outputs is treated as a
bipartite graph, it has to be an expander. The connection degree
d can be very small, in O(logn) or even O(1).

Cook et al. [7] had a thorough study on Goldreich’s one-



way functions. Based on previous study, they even suggested
a simple predicate

P(x0, . . . , x d−1) = x0 ⊕ x1 . . .⊕ (x d−2 ∧ x d−1).

They have conducted experiments with SAT engines on func-
tions thus constructed. Even with d = 5, they observed an
exponential increase of running time as a function of the input
length n . Their experiments also indicate that the MiniSat
engine will take more than 10 seconds if the input length is
140. That provides a strong evidence for us to suggest such
functions to be inserted in logic encryption.

4. THEORY AND SOLUTION TO LOCKING-OBFUSCATION
DILEMMA

This section will investigate the logic obfuscation problem,
that is, how to protect a circuit from structural analysis. Logic
obfuscation is needed in at least two scenarios. First, in IP
protection against an expert attack, obfuscation is needed for
protection of target information. Second, in post-SAT logic
encryptions, obfuscation is needed to protect the lock.

4.A. INDISTINGUISHABILITY LOGIC OBFUSCATION

Obfuscation is a technique to transform one implementation
(a circuit or a program) into another such that the sensitive
information in the former is protected. The difficulty of obfus-
cation comes from the fact that, it is hard to identify the target
information that needs to be protected, and it is even harder to
show that it is actually protected in the transformation. It is so
because it is extremely difficult to capture what can be done by
the attacker in the analysis of the obfuscated implementation.

In logic encryption, we separate attack analysis into logic
analysis and structural analysis. The former is defined as
the analysis using only logic information but none of the
structural information, with the SAT-based attack as a typical
example. The latter is defined as the analysis that has to use the
structural information, with removal attack and signal activity
analysis as examples. It must be reminded that based on the
definition, structural analysis could use logic information and
queries to the functioning circuit. Therefore, complicated analy-
ses combining structural and logic information in sophisticated
ways (such as the attack on SFLL shown in Section 2.B) also
belong to structural analysis by definition.

In order to escape from the doom of cat-and-mouse chasing
between attacks and defenses, it is very important for us to
define an attack model that is as general as possible to capture
all possible structural analyses as discussed. It seems to be an
insurmountable task. Fortunately, we have already a model to
follow in cryptography and theoretical computer science.

Barak et al. [4] was the first to take the Herculean task to
investigate the cryptographic (program) obfuscation. There, an
obfuscation is defined as a random transformation conducted
on a given program, that keeps the functionality and per-
formance (with a possible polynomial time slow-down) but
hides the original program. The way they used to capture the
seemingly inexhaustible attacker behavior is to model it as any
probabilistic polynomial time algorithm. To show that a given
information is hidden by the obfuscation from the attacker, it
is sufficient to show that there exists a simulator without using
that information whose behavior is indistinguishable from the
attacker algorithm.

The most powerful obfuscation is the one that hides all infor-
mation in the program, also known as “black-box” obfuscation.
An important result in Barak et al. [4] is the proof that the
black-box obfuscation does NOT exist for general programs

or circuits. With that, it also proposed a weaker form, called
indistinguishability obfuscation (iO). An iO is defined as such
an obfuscation that, when applied to any two programs of
the same function, produces results that are computationally
indistinguishable from each other.

A big breakthrough along this line of research was the
discovery of a candidate of iO in 2013 by Garg et al. [11]. Even
though the candidate has provable promising cryptographic
properties, its construction is currently still very expensive.
Apon et al. [3] had investigated the implementation of the
candidate, and found that the obfuscation was “still far from
being deployable, with the most complex functionality we are
able to obfuscate being a 16-bit point function.” Given that
their implementation was a program while logic obfuscation
requires a combinational circuit, what we can expect is that the
iO is even more expensive to be implemented in our paper.

Fortunately, we have just discovered that our logic obfus-
cation problem is different from the cryptographic (program)
obfuscation, and luckily, our problem is easier than the cryp-
tographic obfuscation. The critical difference is that the logic
obfuscation has key inputs while the cryptographic obfuscation
does not. In fact, the request to have key inputs is an intrinsic
feature of hardware IP protection. If we have an obfuscated
circuit still functioning as the original circuit, as in the case of
cryptographic obfuscation, then an attacker can simply copy
it without bothering to analyze it. As will be shown in the
next section, when we allow key inputs and have protection
mechanism for them, the logic obfuscation problem becomes
simpler than the cryptographic obfuscation.

In this paper, we plan to develop a solid foundation for the
logic obfuscation, following the model established in iO [4, 11].
The indistinguishability Logic Obfuscation (iLO) will be
defined as the logic obfuscation with key inputs that,
when applied to any two circuits of the same function,
produces results that are computationally indistinguishable
from each other. Under this formulation, an attacker’s any
possible analysis on the obfuscated circuit, modelled as a
probabilistic polynomial time algorithms, cannot distinguish it
from the obfuscation of any other equivalent circuit. Therefore,
all structural information is protected.

4.B. SOLUTIONS BASED ON UNIVERSAL CIRCUITS

As already pointed out in the introduction, logic obfuscation
is the most important and most challenging part of hardware
IP protection. The novelty and success of our paper will be
built on top of our recent discovery of promising candidate
solutions to the solidly defined indistinguishability logic
obfuscation (iLO).

The candidate solution is based on the concept of universal
circuit. A universal circuit is a circuit that can implement any
function in a given family by fixing the values on some selected
inputs (leaving the other inputs as the primary inputs for the
target function). Valiant [24] has developed a universal circuit
that can implement any circuit whose number of inputs and
gates is upper bounded by n . He provided two constructions
using so-called 2-way and 4-way constructions, with sizes
5n logn and 4.75n logn , respectively. Cook and Hoover [8]
have developed a family of depth-universal circuits. For any
n, c,d they gave a universal circuit with depth O(d) and size
O(c3d/ log c) that can implement any circuit having n inputs,
of size c and depth d .

Our discovery can be summarized in the following theorem.

Theorem 4: A universal circuit for any family of circuits is an



indistinguishability logic obfuscation (iLO) for that family.
These candidate solutions to iLO is much more efficient than

any candidate solution to the iO, where a universal circuit is
only one step in the long process. This is because key inputs are
allowed and assumed to be protected in iLO. The prevailing
technology for key protection in existing logic encryption is
tamper-proof register, which is not cheap. Therefore, our paper
will treat the requested key bits in the implementation
as important resources, and will develop approaches to
minimize the number of key bits too.

We also plan to develop solutions to the logic encryption
problem by combining the solutions to iLO and the solutions
developed for logic locking in Section 3. A simple approach
could be, first to lock the original circuit as one shown in
Figure 4, and then to use a universal circuit to obfuscate
the locked circuit. The key bits are composed of the keys
bits in locking and those in obfuscation. The existence of
extremely efficient logic locking circuit as shown in Figure 5
actually provides us a more efficient alternative. That is, we can
simply omit the logic locking step and only do the obfuscation
targeting a bit larger circuit size than the original one. It is
correct because now the obfuscation is secure for a family
already including the locking circuit.

We want to investigate whether the iLO based on the
universal circuit is still secure for logic locking even when
the targeting circuit size is not increased. Pushing further, we
would want to study how far we can reduce the targeting
circuit size while still maintaining the validity of solutions. A
challenge here is that, when the targeting circuit size is smaller
than that of the circuit to protect, the universal circuit cannot
guarantee its implementation. Some specific structure of the
circuit must be explored for the implementation. Hence, there
is a risk that the exploration may leak information about these
structures. But we also have to note that not every information
is sensitive. For example, Valiant’s universal circuit actually
gives out the information on circuit size, but there is generally
no risk.

For modern circuit implementations, the performance is
given a much higher priority than the size. Since the perfor-
mance of a circuit depends heavily on its depth, we would
want to develop iLO solutions based on universal circuits that
have shallow depth. Valiant’s circuits, even though efficient
in sizes, have large depths. For the purpose of performance,
Cook and Hoover’s circuit may be the better starting point.
We will investigate the size decreasing schemes (as discussed
in the previous paragraph) for both Valiant’s and Cook and
Hoover’s circuits.

5. RESOLVING THE TRILEMMA OF LOGIC ENCRYPTION

The universal circuit based solutions in the previous section
have achieved both structural security and locking robustness.
The trilemma will be resolved if the efficiency can also be
achieved on these solutions.

5.A. SOLUTIONS BASED ON QUASI-UNIVERSAL CIRCUITS

As shown in the previous section, the universality in the
obfuscation circuit helps to hide the structural information.
However, it is also the universality that induces a high imple-
mentation cost, on circuit performance, size, and key length.
But since not every structural information is sensitive in logic
encryption, we may not need a truly universal circuit in our im-
plementation. We call a circuit that can implement a sufficient
number of circuits but not all circuits a quasi-universal circuit.
We want to explore and develop efficient quasi-universal

circuits that are still secure for logic obfuscation.
One direction to explore is to restrict the universality to

only signal routing. Recall that Valiant’s universal circuit has
universality both on signal routing and gate functionality. Here
we would rather fix the gate functions in the circuit while
introducing flexibility in signal routing. One possible design
is to fix all the gates to be AND, but allow the signal polarities
as well as their routing to be programable. For that purpose,
any candidate connection between two gates will pass through
two key gates each with a key bit: an XOR gate and an OR gate.
The first one is used to decide the polarity and the second one
whether the signal is routed.

We will first establish that if we allow all possible connec-
tions in a topological order, then our design is as universal as
Valiant’s. The design will also have depth of at most 3d for any
target circuit of depth d . The only problem is that the maximal
fanin and fanout degrees could reach n − 1.

In order to reduce the fanin and fanout degrees in the above
design, we plan to group the gates into different levels and to
have connections only between adjacent levels. An important
problem here is to decide how many gates are needed in each
level. One possible solution is to make the decision based on
the target circuit. We can first do a breadth-first traversal of
the target circuit (while ignoring inverters) to assign a level to
each gate based on its longest path from the primary inputs.
Then we allocate at least the same number of gates to each
level. Adding more gates in each level can help to fool the
attacker and even increase the solution space to include the
logic locking discussed in Section 3.

To further reduce the fanin and fanout degrees, we need to
avoid full connections between adjacent levels if the number
of gates in the levels are too many. We plan to have a design
where the levels closer to the primary inputs have more gates
than those closer to the primary outputs. A threshold t will be
selected, and every gate in each level will be connected to at
most t gates in the next level. When the maximal number of
gates in adjacent levels is at most t , we have full connections.
When the maximal number of gates is much larger than t ,
we get convolutional connections. We called such a design a
convolutional circuit, as shown in Figure 6.

ki kj
Each connection:

Fig. 6. One example of convolutional circuit with fanout degree of
three.

5.B. SOLUTIONS STARTING WITH THE ORIGINAL CIRCUIT

As already discussed, if logic locking is designed as a differ-
ence logic then XORed with the target circuit, then obfuscation
is needed to protect the lock. The approach of first locking and
then obfuscating will introduce a lot of keys and overhead.
In this section, we will develop combined logic locking and
obfuscation in order to get efficient logic encryptions.

In evaluating existing logic encryption algorithms, Subra-
manyan et al. [23] have found that placing XOR key gates on the
primal inputs of an AND-tree gives a hard case for SAT-based



attack. We have discovered here is that if the target circuit has
very biased on- and off-set, then placing XOR/XNOR key gates
on the primal inputs forms an ideal logic locking.

Lemma 5: If a target circuit f (x) has a smaller on- or off-set
of size M , then a locking by placing XOR/XNOR key gates on
the primal inputs has an average attack complexity of 2n/M .

Please note that this locking scheme is different from that
in Figure 4. Here, different target circuit will have different M
which cannot be selected in locking. However, the benefit is
that no obfuscation is needed now since the lock is hidden.

If we have a target circuit with very biased on- and off-set
sizes, meaning that 2n/M is exponential in terms of n , then
we already have an efficient logic encryption, with combined
logic locking and obfuscation. Unfortunately, it does not work
if 2n/M is small.

6. EXPERIMENTAL RESULTS

To validate our approaches, we have conducted three sets of
experiments to check the locking robustness of our designs.
The first set is the locking with the best trade-off between
query complexity and error number, as shown in Figure 5. The
second set is the obfuscation based on quasi-universal circuits,
especially that uses the convolution circuit shown in Figure ??.
The third set is the combined logic locking and obfuscation
when the target circuit is very biased on its on- and off-set.

We apply the SAT-based attack [23] to the locking design
in Figure 5 and the same design with Goldreich’s one-way
function [12] applied on the key input, and to measure the
actual attack time by the SAT-based attack.

It should be noted that in the locking design, the query
complexity and error rate is independent of the original circuit
f (x). We have verified this by checking the attack time by SAT-
based attack on the same locking on a set of different original
circuits.

We first test the simple logic locking design shown in Fig-
ure 5. Please recall that this locking has 2n/2 as both query
complexity and error number. We have created a sequence of
lockings with the input lengths ranging from 12 to 26. Then
we run the SAT-based attack on them and collect the runtime.
The result is plotted in Figure 7, where the x-axis shows the
input lengths and y-axis gives the attack time in log scale.
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Fig. 7. Runtime by SAT-based attack on lockings without one-way
function (Figure 5) and with one-way function.

We also want to check the effectiveness of adding Goldreich’s
one-way function on the key input. The one-way function we
use has an input length of 80 and an output length equal to
the circuit input length. We use the simple P = x0 ⊕ x1 ⊕ x2 ⊕

(x3 ∧ x4) as discussed in [7]. The SAT-based attack is run on
these lockings with different input bit-length and the results
are shown in Figure 7. It can be verified that both the simple
logic locking and the one with Goldreich’s one-way function

have exponential growths of attack time in terms of the input
lengths.

For the second set of experiments, we have implemented
the simple convolutional circuit in Figure 6, with a range of
input lengths and depths. On the convolutional circuit, we
randomly select the programming bits to fix the target function.
We then apply the SAT-based attack to find out the key. In
the convolutional circuit, the number of programming bits
are huge. In order to reduce the key length, in addition to
considering all programming bits as keys (“full key”), we also
consider using only half of them as keys (“partial key”). The
running time of the SAT-based attacks on them is shown in
Figure 8. It can be validated that the attack time is exponential
in the input lengths for both cases.
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Fig. 8. Runtime by SAT-based attack on convolution circuits with full
key and partial key.

The third set of experiments is used to validate the efficient
combined locking and obfuscation design for target function
with biased on- and off-set. Here, we set up our target function
as

f (x) = ⋀ i∈evenxor(x i , x i+1).

It can be checked that the on-set of the function is 2n/2, thus
is very biased. Based on Lemma 5, the following encryption
circuit is good.

g(k , x) = ⋀ i∈evenxor(xor(k i , x i), xor(k i+1, x i+1)).

The running time of the SAT-based attacks on such an encryp-
tion with different input lengths is shown in Figure 9. It can
be validated that the runtime is exponential in the length of
the inputs.
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Fig. 9. Runtime by SAT-based attack on efficient locking and obfusca-
tion of biased circuits.

7. CONCLUSION

Logic encryption is an important technique for hardware
IP protection. It has been discovered that there is a trilemma



among the locking robustness, structural security, and encryp-
tion efficiency in logic encryption. Traditional logic locking
pre-SAT attack has achieved structural security and encryption
efficiency but not locking robustness. Post-SAT logic encryption
has achieved locking robustness and encryption efficiency but
not structural security.

In this work, we have investigated thoroughly the design
space in logic encryption, including locking, obfuscation, and
efficiency. We first established a contention between query
complexity and error number in logic locking, and designed
efficient locking methods that achieve both high query com-
plexity and error number.

We then defined and solved the logic obfuscation problem.
We have shown that a logic obfuscation based on the concept
of universal circuit has solved the indistinguishability Logic
Obfuscation (iLO). In order to achieve encryption efficiency,
thus to resolve the trilemma in logic encryption, we have
proposed solutions based on quasi-universal circuits such as
convolutional circuits, and solutions based on the biased target
circuit.

The future work should be focused on the efficient logic
encryption for those target circuits with balanced on- and off-
set.

ACKNOWLEDGEMENT

This work is partially supported by NSF under CNS-1441695,
CCF-1533656, and CNS-1651695.

REFERENCES

[1] Y. Alkabani and F. Koushanfar. Active hardware metering
for intellectual property protection and security. In Pro-
ceedings of 16th USENIX Security Symposium on USENIX
Security Symposium, pages 20:1–20:16, 2007.

[2] N. Alon. Transversal numbers of uniform hypergraphs.
Graphs Combin., 6:1–4, 1990.

[3] D. Apon, Y. Huang, J. Katz, and A. J. Malozemoff. Imple-
menting cryptographic program obfuscation. In CRYPTO,
2014.

[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,
S. P. Vadhan, and K. Yang. On the (im)possibility of
obfuscating programs. In CRYPTO, pages 1–18, 2001.

[5] A. Baumgarten, A. Tyagi, and J. Zambreno. Preventing IC
piracy using reconfigurable logic barriers. IEEE Design and
Test, 27(1), 2010.
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