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Abstract

Supervised learning on Deep Neural Networks (DNNs) is
data hungry. Optimizing performance of DNN in the pres-
ence of noisy labels has become of paramount importance
since collecting a large dataset will usually bring in noisy
labels. Inspired by the robustness of K-Nearest Neighbors
(KNN) against data noise, in this work, we propose to ap-
ply deep KNN for label cleanup. Our approach leverages
DNNs for feature extraction and KNN for ground-truth la-
bel inference. We iteratively train the neural network and
update labels to simultaneously proceed towards higher
label recovery rate and better classification performance.
Experiment results show that under the same setting, our
approach outperforms existing label correction methods
and achieves better accuracy on multiple datasets, e.g.,
76.78% on Clothing1M dataset.

1 Introduction

Deep Neural Networks (DNNs) have achieved remarkable
success in various applications including computer vision,
speech recognition, and robotics. Supervised learning on
DNNs is data hungry. Obtaining a large dataset with la-
bels at an affordable cost is usually done by crowdsourc-
ing [33, 36] and web query [25, 34]. Each of those would
inevitably introduce a significant amount of noisy labels.
On the other hand, DNNs are prone to overfit noisy train-
ing data [36, 1], and their generalization performance is
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downgraded as a result.

To resist noisy labels in training DNNs, numerous
methods have been proposed, including robust loss for-
mulation [22, 9, 31], curriculum learning [10] and label
correction [35, 28]. In this paper, we focus on label cor-
rection approach which alternatively sanitizes noisy la-
bels and improves the model performance. Previous work
leverages prediction from DNN itself to infer the ground
truth labels [35, 28]. However, such prediction is likely
to be poisoned by the noise in the training dataset. There-
fore, we are motivated to seek for a more robust label cor-
rection approach.

In this paper, we leverage the deep K-Nearest Neigh-
bors (KNN) algorithm to facilitate learning with noises.
The KNN algorithm assumes that similar things exist in
close proximity. KNN is a favorable classification ap-
proach when no prior knowledge on sample distribution
are available, and has shown robustness against adversar-
ial examples [26, 20, 30]. Our approach is based on a
key observation that during the learning phase, useful fea-
tures are learnt in the intermediate layers despite the pres-
ence of corrupted labels in the dataset. We propose to
use those features to discover similarity among samples.
Even though the final labels are different for two samples
belonging to same category, their features share high sim-
ilarity.

Overall, we present a framework that iteratively ap-
plies deep KNN to infer ground truth labels and retrains
the neural network with the predicted labels, thus simul-
taneously making progress toward higher label recovery
and better classification performance. It is a generalized
framework that does not require an estimation of noise
transition distributions or a clean dataset for reference.
We also propose two KNN label correction algorithms.
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The first one, IterKNN, uses all the labels to infer ground
truth labels. The second one, SelKNN, selects a certain
amount of clean examples as reference for KNN ground
truth inference. The selection principle is to find sam-
ples with small cumulative normalized loss because those
samples are more likely to have correct labels. We empir-
ically show that our approach achieves state-of-art perfor-
mance.

The contributions of this paper are as follows:
• To our best knowledge, we are the first to apply

deep KNN for label correction in corrupted training
dataset. The features are extracted from intermedi-
ate layers of neural network. To further mitigate the
impact of noisy labels, we propose a loss ranking ap-
proach to select samples with high confidence to be
labelled correctly as reference for KNN prediction.

• We explore the benefits of iterative retraining after
label correction. We show that iterative retraining
can help neural network escape from over-fitting and
discover more corrupted labels, thus achieves better
performance.

• We conduct extensive experiments to demonstrate
the robustness of deep KNN against label noise. We
found out that even though the final prediction is cor-
rupted by the noise in training dataset, CNN can still
learn robust and useful features in deep layers to fa-
cilitate KNN for ground-truth label inference. We
also provide insights on how deep feature is better
than both of the shallow features and final logits with
regard to noisy label correction..

2 Related Work

2.1 Generalization of Deep Neural Net-
works

Zhang et al. [36] showed that deep neural networks have
the capacity to memorize completely random labels, but
may result in poor generalization. This indicates that la-
bel corruption in training dataset has a negative impact on
DNN performance. Other studies [16] demonstrated that
DNN tends to learn clean labels first and that overfitting
to corrupted labels requires to stray far from initialization.
Thus early stop is a simple but effective method to resist
noisy labels.

2.2 Semi-Supervised Deep Learning

The goal of semi-supervised learning is to learn from par-
tially labelled dataset. With the development of DNNs,
researchers have studied how DNN can learn in semi-
supervised setting. One methodology is to add an un-
supervised loss term as regularizer to force mutual ex-
clusiveness of different classes [29, 24]. Another pop-
ular approach in semi-supervised deep learning is to as-
sign pseudo-labels to unlabeled examples. The pseudo-
labeled data are trained in the supervised fashion. Ah-
met et al. [13] have proposed transductive label propaga-
tion using nearest neighbor graph. Our approach can be
viewed as label propagation from clean examples to noisy
examples. However, our problem is more challenging be-
cause we do not assume that clean examples are provided.

2.3 Noisy Label Learning

Loss correction approach is widely studied in training
with noisy labelled data. Forward backward loss correc-
tion [22] directly leverages the noisy transition matrix T
to modify the Cross Entropy (CE) loss. But in practice
T is usually not given. Other studies attempt to estimate
the noisy transition matrix by modelling it with a fully
connected layer [27, 15], or use bootstrapping to avoid di-
rect noise modelling [23]. Recently, Wang et al. [31]
have proposed to combine CE with Reverse Cross En-
tropy (RCE) and demonstrated that Symmetric Learning
(SL) can avoid overfitting noisy data.

The field of Curriculum Learning (CL), which is mo-
tivated by the idea of a curriculum in human learning,
attempts at imposing some structure on the training set.
Such structure essentially relies on a notion of “easy” and
“hard” examples, and utilizes this distinction in order to
teach the learner how to generalize easier examples be-
fore harder ones [10]. Empirically, the use of CL has been
shown to accelerate and improve the learning process [3]
and noise robustness [4].

Noisy label detection and filtering is another approach
to mitigate data noise [12]. This is based on the fact
that removing corrupted data can improve model perfor-
mance. However, the hard samples may be confused with
the noisy ones. As a consequence, certain amount of hard
samples are filtered out together with noisy samples. The
resultant clean dataset contains most of the easy samples,
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which will make the classifier less generalizable.
Other methods attempt to correct noisy labels. Tanaka

et al. [28] have formulated the noisy label learning prob-
lem as a joint optimization problem where model parame-
ters and data sample labels are optimized alternatively. Yi
et al. [35] also have targeted the optimization problem by
concurrently updating noisy labels and model parameter.
Both methods require the prior knowledge over label dis-
tribution in order to be effective. However, in practice it
is difficult to obtain such prior knowledge.

2.4 Robust K-Nearest Neighbors
KNN is a favorable classification approach when no prior
knowledge on sample distribution is available, and is be-
lieved to be resistant to label noise. Gao et al. [8] have
provided theoretical analysis on the robustness of KNN
against noisy labels for binary classification. For sym-
metric noise where the labels of each class have equal
probability to be flipped to the other, they showed that
KNN can reach the same consistent rate as in the noise
free setting. As for asymmetric noise, KNN is still ro-
bust since most samples can be correctly classified. They
then derived a strategy to deal with noisy label classifi-
cation with KNN. Specifically, their method corrects the
labels of “totally misled” samples. How the labels should
be corrected is depending on the estimations of noise pro-
portions [17, 19].

Another strategy to resist label noise with KNN is to
emphasize the more trustworthy information. Parvin et
al. [21] assign weights to every sample based on its valid-
ity. On the other hand, it is shown that to assign weights
to features can also improve robustness and accuracy for
KNN [14].

An earlier work [2] proposes to use KNN for select-
ing clean examples. It shows that a simple KNN filtering
approach on the logit layer of a preliminary model can re-
move mislabeled training data and help produce more ac-
curate models. This work is most closely related to ours.
But we want to highlight several difference between the
two works and address our novel contribution on combin-
ing deep KNN inference with noisy learning. Firstly, in-
stead of only filtering out suspicious examples, our work
attempts to use KNN to correct corrupted labels so that
the noisy examples are recycled to augment the training
dataset, thus boosting the generalization performance of

the final model. Besides, we also study the effect of se-
lecting different layer as features on the KNN correction
performance rather than restricting choice of only extract-
ing the last logit layer. Last but not least, we discover
the disadvantage of adopting the whole training dataset as
KNN reference (as done in IterKNN) when the noisy level
is high. Therefore, we propose a clean example selection
strategy (as done in SelKNN) based on ranking the cu-
mulative training loss with the hope that noisy labels will
be mostly corrected by clean labels as reference for KNN
classification.

3 Main Approach

3.1 Preliminaries and Problem Statement

We are targeting a multiclass classification problem with
label noise. LetX and Y denote the image space and label
space, respectively. Let D̃n = {(x1, ỹ1), · · · , (xn, ỹn)}
be the noisy training dataset where xi ∈ Rd is a d-
dimensional vector and ỹi ∈ Y = {1, ..., C}. True labels
yi, · · · , yn are not observable. There exists a hidden noise
model T , while ti = P (ỹi|xi, yi) representing the proba-
bility the true label yi of instance xi is flipped to ỹi. Note
if T is only class-dependent, we will have ti = P (ỹi|yi),
which is assumed in some existing work [22]. Conse-
quently, the overall label error rate on the dataset due to
noise is defined as Pr(ỹi 6= yi).

When the dataset is clean, the learning problem can be
formulated into an optimization problem as follows:

θ∗ = argmin
θ

1

n

n∑
i=1

J(yi,F(xi, θ)), (1)

where F is a classifier with parameters θ and J is the
target loss function. The objective is to find optimal pa-
rameters θ∗ such that average loss is minimized. How-
ever, when labels are corrupted, we can not obtain the
above formulation since ground truth labels yi, · · · , yn
are unknown. Therefore, only corrupted labels can be
used in the following optimization problem:

θ̃∗ = argmin
θ

1

n

n∑
i=1

J(ỹi,F(xi, θ)). (2)

3



Figure 1: The overall architecture of IterKNN. The deep neural network extracts embeddings of samples with intermediate layers.
After every training episode, KNN classifier corrects labels in the reference dataset based on the embeddings of the samples. The
deep neural network is trained on a hybrid loss function, which is comprised of the loss on the original labels and the loss on KNN
predicted labels.

θ̃∗ is only a sub-optimal solution to Equation 1. To
approach the real optimal solution θ, we attempt to detect
and correct the corrupted labels based on the following
fact:

θ∗ = lim
y→ỹ

θ̃∗. (3)

It is also important to develop a method agnostic to T ,
that is, we neither assume any structure nor require any
prior knowledge of noise model T .

3.2 Deep k-Nearest Neighbor Label Correc-
tion

k-Nearest Neighbor is a widely used non-parametric clas-
sification approach. It predicts the label of input by find-
ing a total of k nearest neighbors and then taking a major-
ity voting of the labels of those neighbors:

ηk(x) = argmax
y

n∑
i

1 · (y = yi,x ∈ Nk(xi)), (4)

in which ηk(x) is the label prediction for sample x, and
Nk(x) is some distance matrix.

Inspired by the robustness of KNN against noisy
dataset [8], we propose to apply KNN on label correction.
It requires to define a distance metric to measure the sim-
ilarity between image samples. One straightforward solu-
tion is to compute the total pixel-wise difference between
pairs of images. Yet such a metric is weak even toward
a very small transformation. The most popular approach
is to measure the distance in feature space. Consequently,
one critical question is what kind of features we should
use to represent each image.

Traditional offline feature extraction approaches like
SIFT [18] and HOG [7] can resist transformations, but
may not preserve enough class-related information for
classification. As deep learning becomes dominant in
vision-related problems, deep feature extraction attracts
more and more attention and shows state-of-art perfor-
mance in downstream tasks. In this paper, we use the
deep representation learned by the neural network as fea-
tures. More specifically, we take the intermediate layers
from the neural network being trained as feature extrac-
tors. Even though the training dataset is corrupted, the
deep layers of DNN can still extract useful features (em-
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beddings). We will empirically show and validate such a
result in Sec. 4.3. Moreover, as noisy labels get corrected
by KNN in every episode, the DNN can be trained on
more accurate data and thus produces features with higher
quality. The better features can further facilitate KNN for
more accurate label correction. Such a process forms a
benign cycle, and benefits both label correction and neu-
ral network training as the result.

Algorithm 1 Iterative Training and Correction Algorithm

Input: the noisy training set S̃n, initial network
model θ0, k, number of training episodes M, number of
training epochs T, initial learning rate ε0, loss coefficient
γ.

1: Initialize KNN corrected set Ŝn to noisy set S̃n
2: for m← 1, M do
3: (re)Initialize θ to θ0
4: (re)Initialize ε to ε0
5: for t← 1, T do
6: Update θ at training rate ε with loss function:

(1− γ) · J(θ;x, ŷ) + γ · J(θ;x, ỹ)
7: Update learning rate ε accordingly
8: end
9: Ŝn ← label_correction(Ŝn) // either IterKNN or

SelKNN
10: Decay loss coefficient γ
11: end
12: S∗n ← Ŝn
13: Train θ by training neural network on Ŝn

Output: corrected set S∗n, trained network model θ.

3.3 Iterative Error Label Correction

After one training episode is finished, we can extract deep
embeddings of all the samples in the training dataset and
perform KNN label correction. Then we move to the next
episode with the updated labels. At this point, the neural
network may already overfit the noisy labels in the train-
ing dataset. As we have mentioned, the quality of embed-
ding extraction by the neural network and the quality of
label correction by KNN are correlated. Being trapped in
overfitting to noisy labels will adversely affect both qual-
ities.

To overcome overfitting, we regularly reinitialize the
neural network model at the beginning of every episode.

This will result in a more accurate neural network model
in every episode, as long as the label accuracy is improved
by label correction. The overall procedure is shown in
Algorithm 1.

3.4 Selective Label Correction
In this paper, we propose two KNN label correction ap-
proaches, IterKNN and SelKNN. In IterKNN, the features
of all the samples along with their noisy labels are used
as reference for KNN label inference as shown in Algo-
rithm 2. However, datasets for real applications are typi-
cally very large. That makes it very expensive to launch
KNN classification for every single instance across the
whole training dataset. In that sense, a better approach
is to selectively choose reference samples for KNN. The
most naive selection heuristic is random sampling in the
dataset. On the other hand, since the dataset itself is cor-
rupted, the KNN sample set could contain a large portion
of samples which have corrupted labels.

Our objective is to ensure the KNN sample set contains
as many clean samples as possible to make it more trust-
worthy. One simple but effective heuristic to filter clean
samples is to utilize the loss information. In general, clean
samples are easier to learn and can be learned by the neu-
ral network faster. Reversely, noisy labels are more diffi-
cult and can only be memorized in the later stage of train-
ing [5]. Based on that, we believe cumulative normalized
loss is a good factor to determine the likelihood of sam-
ples having corrupted labels.

Accordingly, we propose selective label correction al-
gorithm (SelKNN) as shown in Algorithm 3. We track
and accumulate the normalized loss of every image in all
previous epochs. At the end of an episode, we rank the
cumulative normalized loss for all samples and pick M
samples with lowest loss from each class c as the refer-
ence of KNN classifier:

Bc((x, ŷ), l) = {(x, ŷ) ∈ Ŝn|J(θ;x, ŷ) ≤ lc, ŷ ∈ c},
(5)

where (x̂, ŷ) are drawn from the current Ŝn, y is the
prediction of the current F(x, θ), and lc is the infimum of
cumulative loss that class c has M samples with cumula-
tive losses less than or equal to it:

lc = inf{l : |(x, ŷ)| =M,J(θ;x, ŷ) ≤ l}. (6)
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The labels of those samples in Bc are kept unchanged,
while the labels of the remaining samples will be cor-
rected and updated with KNN according to the samples
in Bc.

Algorithm 2 KNN Label Correction (IterKNN)

1: procedure label_correction(D̂n)
2: D̂n

′
← {}

3: for (xi, ŷi) in D̂n do
4: Simulate embedding ei with F(xi, θ)
5: ŷi

′ ← argmaxy
∑n
i 1 · (y = ŷi, e ∈ Nk(ei))

6: D̂n
′
← D̂n

′
∪ (xi, ŷi

′)
7: end
8: return D̂n

′

9: end procedure

Algorithm 3 Selective KNN Label Correction (SelKNN)

1: procedure selective_label_correction(D̂n)
2: B ← {}
3: for c in Y do
4: Find the loss threshold lc of class c according to

Equation 6
5: Select reference samples Bc for KNN according

to Equation 5
6: B ← B ∪Bc
7: end
8: D̂n

′
← B

9: for (xi, ŷi) in D̂n \B do
10: Simulate embedding ei with F(xi, θ)
11: ŷi

′ ← argmaxy
∑n
i 1 ·(y = ŷi, e ∈ Nk,B(ei))

12: D̂n
′
← D̂n

′
∪ (xi, ŷi

′)
13: end
14: return D̂n

′

15: end procedure

3.5 Design of Loss Function
The DNN part in the framework keeps being updated with
regard to the loss function. If only the corrected labels are
used in training, the network will reach self-convergence
quickly. It is because of the nature of KNN: KNN will
correct the noisy or hard samples, and result in a dataset
that is easier for the network to learn. To resolve this quick
self-convergence problem, we always keep a copy of the

original noisy dataset along with the corrected dataset,
which is updated after every episode. We implement a
total loss that is a convex combination of the losses on the
two datasets:

Jtrain = (1−γ) ·J(F(x, θ), ŷ)+γ ·J(F(x, θ), ỹ), (7)

where γ is the weight coefficient for the total loss
Jtrain, which is distributed between the original noisy
dataset D̃n and the current KNN corrected dataset D̂n.
Initially γ is set as 1.0, meaning in the first iteration
we only consider the original noisy labels and ignore the
KNN predicted labels. This makes sense since the DNN
classifier has not been trained and no meaningful features
can be obtained from it. To improve convergence of the
algorithm, we decay γ by σ for every training iteration
after the current labels are updated. As the episode in-
dex grows, our training loss tends to focus on the KNN
predicted labels. Eventually, when γ gets close to 0, the
neural network distill itself and the algorithm will con-
verge. We realize our final loss is similar to bootstrapping
loss [23]. The difference is that bootstrapping uses pre-
diction from classifier itself while we use prediction from
KNN. We will empirically show KNN prediction is more
robust in Sec. 4.3. Overall architecture is illustrated in
Figure 1.

4 Experiments and Evaluation
We conduct experiments and evaluate our approach on 3
popular synthetic datasets (MNIST, CIFAR-10, CIFAR-
100), and 1 large-scale real life dataset (Clothing1M). All
experiments are implemented using the PyTorch frame-
work.

4.1 Noise Settings
We consider both symmetric and asymmetric label noises
in our experiments.

Symmetric Noise: Given the noise level π, the label of
every sample has a probability π to be flipped to another
class uniformly at random:

Pr(ỹi = yi) = 1− π,

∀j 6= i : Pr(ỹi = yj) =
π

|Y| − 1
.
(i, j ∈ Y) (8)
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Asymmetric Noise: We use a similar configuration
as discussed in [22]. We inject asymmetric label noises
to mimic the part of the mistakes made between similar
classes. For MNIST, we use the following class transi-
tions: 7→1, 2→7, 5↔6, and 3→8. For CIFAR-10, we
have truck→automobile, bird→airplane, cat↔dog, and
deer→horse. For CIFAR-100, we pair classes in a similar
fashion.

4.2 Hyper-parameter Settings

We use Adam optimizer with weight decay of 1e-4 and
initial learning rate of 0.001 for all experiments.

MNIST: We use a 5-layer CNN model with 4 convo-
lution layers followed with a fully connected layer. Each
training episode has 40 epochs and the learning rate is de-
creases by 10 times on epoch 20 and epoch 30. The batch
size is 256.

CIFAR-10: We use Pre-act Resnet 32 [11]. Each
episode of training has 120 epochs and the learning rate
is decreased by 10 times on epoch 60 and epoch 90. For
data augmentation, we use random crop, random horizon-
tal flip, random affine and color jetter. The training batch
size is 512.

CIFAR-100: We use Pre-act Resnet 56. Each episode
of training has 120 epochs and the learning rate is de-
creased by 10 times on epoch 80 and epoch 120. Data
augmentation and training batch size are same to those of
CIFAR-10.

We compare our approach with the follow baselines:
Training with cross entropy: This is the most basic

training setting, in which the neural network is trained di-
rectly with noisy labels using cross entropy loss. Sym-
metric Loss [31]: This approach uses a combination of
cross entropy loss and reverse cross entropy loss. In that
way it encourages learning hard samples without overfit-
ting noisy labels. Joint Optimization [28]: This method
optimizes the loss by updating network parameters and
class labels alternatively. PENCIL [35]: This approach
is similar to Joint Optimization. The only major dif-
ference is that differentiable psuedo labels are created
and updated together with model parameters simultane-
ously. Both Joint Optimization and PENCIL add two ex-
tra losses, entropy loss and regularization loss, which re-
quire prior knowledge of the true class distribution.

All the above baselines are re-implemented according
to their open-source codes with minor modifications to
fit our settings. We always set k value to 100, using L2
distance metric, and use majority voting for label infer-
ence on both IterKNN and SelKNN. We perform in total
10 episodes of training together with label updating for
every time of execution. Symmetric cross entropy loss
is adopted to encourage learning hard examples. Weight
coefficient γ is initially 1.0 and decayed by 1.2 every
episode. For SelKNN, we pick up top M% of images
from each class as KNN reference samples in order to up-
date the labels of the the remaining 1−M% samples. M
is set to 20 for first episode and is incremented by 10 every
episode afterwards, until it reaches 100. We can generally
increase M because more and more corrupted labels are
cleaned up. When M reaches 100, SelKNN will reduce
to IterKNN to facilitate further label correction. The com-
parison results are shown in Table 1. SelKNN achieves
state-of-the-art performance on most noise settings, espe-
cially when noise rate is high while IterKNN has com-
petitive performance when the noise rate is low. Another
observation is the variance of the accuracy among mul-
tiple trials is low when the noise rate is low due to less
randomness. When the noise rate increases, the variance
of test accuracy obtained from SelKNN is least affected
since it only pick highly possible clean samples to update
labels. This result further validates the robustness of our
SelKNN approach.

4.3 Robustness and Effectiveness of KNN
To demonstrate the robustness of KNN over DNN, we
perform 5 types of 1-episode training on CIFAR-10 with
60% symmetric noise. Here we employ cross entropy loss
to better differentiate the robustnesses of different predic-
tions since it is relatively weak against label noise. We
keep track of the ground-truth label inference accuracy as
training proceeds. The results and details are illustrated
in Fig. 3. All types of predictions overfit the data noise
to some extent at the later stage of the episode. We let
the DNN trained on noisy dataset to extract embeddings
as well as predict labels for input images. When IterKNN
and SelKNN are allowed to run classification on clean la-
bels, their predictions are less subject to over-fitting than
DNN prediction. This shows the DNN can still learn
from noisy datasets, so that it derives similar features for
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(a) First Convolutional Layer Output (b) Last Convolutional Layer Output (c) Fully Connected Layer Output
Figure 2: t-SNE 2D embeddings of outputs from different layers after 1 training episode. (CIFAR-10 with 60% symmetric noisy
labels)

methods symmetric noise rate asymmetric noise rate
20% 40% 60% 80% 20% 30% 40%

MNIST
CE 89.91±0.02 68.75±0.04 44.35±0.24 24.77±0.37 94.22±0.07 86.40±0.12 80.33±0.09

Joint Opt [28] 94.89±0.07 93.94±0.16 91.03±0.46 66.55±1.05 94.79±0.26 93.01±0.24 91.78±0.33
PENCIL [35] 95.34±0.21 93.89±0.72 93.06±0.53 70.25±0.86 96.22±0.18 94.38±0.21 90.15±0.42

SL [31] 98.77±0.07 97.65±0.19 95.27±0.35 68.04±0.33 98.61±0.21 97.11±0.81 96.15±0.69
IterKNN 98.33±0.27 96.35±0.22 94.33±0.32 68.81±0.49 98.65±0.11 97.27±0.15 94.18±0.41
SelKNN 98.25±0.12 97.79±0.19 96.12±0.31 70.88±0.29 98.69±0.08 97.80±0.17 96.39±0.18

CIFAR10
CE 83.04±0.18 66.75±0.11 46.98±0.21 21.33±0.36 86.16±0.24 80.91±0.13 70.51±0.76

Joint Opt [28] 91.61±0.74 87.75±0.36 84.02±0.42 58.46±0.97 91.16±0.09 89.41±0.21 86.76±0.81
PENCIL [35] 92.45±0.81 88.32±0.49 84.42±0.98 59.02±0.72 90.21±0.16 89.36±0.32 87.59±0.45

SL [31] 87.89±0.07 84.36±0.09 79.75±0.18 55.36±0.42 87.44±0.22 85.24±0.25 80.32±0.29
IterKNN 89.43±0.14 87.34±0.23 80.19±0.21 56.84±0.38 90.29±0.22 89.28±0.18 87.15±0.33
SelKNN 91.99±0.44 89.25±0.39 85.65±0.92 59.65±0.27 91.38±0.25 89.75±0.32 88.06±0.28

CIFAR100
CE 60.13±0.20 51.25±0.52 36.75±0.81 19.35±0.79 61.16±0.74 56.27±0.78 47.35±0.78

Joint Opt [28] 68.06±0.88 64.79±0.91 54.29±0.97 27.78±0.94 69.13±0.39 68.49±0.36 59.23±0.70
PENCIL [35] 71.14±0.34 68.75±0.62 56.02±0.66 26.33±0.58 73.15±0.85 71.02±0.63 61.48±0.94

SL [31] 64.85±0.29 59.42±0.34 45.85±0.46 22.81±0.79 65.19±0.21 63.37±0.45 60.01±0.65
IterKNN 69.15±0.30 62.48±0.91 53.36±0.47 28.93±0.98 69.92±0.42 68.13±0.37 62.14±0.39
SelKNN 72.75±0.68 69.88±0.64 57.43±1.23 32.91±0.57 72.03±0.26 71.09±0.45 63.32±1.39

Table 1: Accuracy(%) from the last training epoch on 3 datasets under different noise settings. We run 10 trials, report mean and
std. Our approach achieves best results under most settings.

similar images, which validates the robustness of KNN
based approach. On the other hand, when no ground-
truth or clean labels are provided, both of IterKNN and
SelKNN have slightly worse performance, but are still
clearly better than the DNN prediction. All those ob-
servations lead to the following two conclusions: (1) our

IterKNN and SelKNN should be more effective than those
self-learning approaches using DNN prediction to recover
labels [28]. (2) SelKNN can be improved with a better
filtering method (e.g., [12]) to select clean reference sam-
ples.
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methods symmetric noise
20% 40% 80%

Joint Opt 93.35±0.32 90.31±0.36 58.72±0.85
PENCIL 94.36±0.36 91.21±0.52 59.14±0.16
IterKNN 94.47±0.25 89.16±0.28 56.95±0.79
SelKNN 93.29±0.25 91.32±0.22 59.94±0.52

Table 2: Label recovery rate(%) on CIFAR-10 with different
symmetric noise levels. We run 10 trials, report mean and std.

Figure 3: Ground truth label inference accuracy in the first
episode with different prediction methods, including DNN pre-
diction, IterKNN prediction using noisy labels or ground-truth
labels, SelKNN prediction using filtered labels or known clean
labels (20% of whole dataset). The top curve is the clean rate of
reference samples, which converges to around 92%. (CIFAR-10
with 60% symmetric noisy labels)

4.4 Iterative Retraining

Iterative retraining can correct more noisy labels and fur-
ther improve the performance of the classifier, especially
when noise level is extremely high. As shown in Fig. 4,
the main proportion of label recovery is achieved in the
first three episodes, yet some incremental recovery hap-
pens in the remaining episodes. The main purpose of re-
training from scratch is to escape from over-fitting to the
current noisy labels. Another approach to overcome over-
fitting is to continue training but periodically reschedule
the learning rate. When labels have been updated, the
learning rate is also reset to a large value so that the model
can transit to an under-fitting state. As shown in Fig. 4,
performance cannot be further improved for later episodes
if training continues without resetting the learning rate.
It is because with small learning rate the model cannot
escape from over-fitting noisy labels. We also found
out retraining from re-initialized neural network performs
slight better than simply rescheduling learning rate since

Figure 4: Label recovery rate for SelKNN under different train-
ing settings versus number of episodes. “No retraining” means
training continues on the current neural network instead of re-
initialized from scratch for every next episode. (CIFAR-10 with
80% symmetric noisy labels)

re-initialization makes neural network completely forget
noisy labels. We compare the final recovery accuracy with
baselines in Table 2. IterKNN performs well when noise
level is low while SelKNN beats other methods on highly
noisy dataset.

Figure 5: Ground-truth label inference accuracy of SelKNN
(left) and IterKNN (right) with different k in the first episode.
(CIFAR-10 with 60% symmetric noisy labels)

4.5 Impact of k Value

Since k value can have a large impact on the perfor-
mance of neighbor classification, we also investigate how
IterKNN and SelKNN can be affected by k. We select
7 different k values (5, 20, 50, 100, 200, 500, 1000) and
track the label prediction accuracy within one training
episode without any label correction. The prediction is
made after every 10 epoch and is shown in Fig. 5. As can
be seen, SelKNN is relatively invariant to k and all the
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choices of k consistently outperform the label prediction
from classifier itself during the episode. It is also clear
that IterKNN is more sensitive to k and requires a rea-
sonably large k value to obtain good performances. This
is because for IterKNN, the whole noisy training dataset
is used as reference for KNN prediction. When k is too
small, it is more likely all nearest neighbors are corrupted.
So even if all the neighbors as well as the queried image
belong to the same ground-truth class, KNN will still infer
an incorrect labels.

Figure 6: Ground-truth label inference accuracy of SelKNN
with different layer features in the first episode. (CIFAR-10 with
60% symmetric noisy labels)

4.6 Choice of Deep Features
A fundamental question for KNN-based approaches is
what feature to use. In order to evaluate the quality of
different features, we train Pre-act ResNet 32 for one
episode on CIFAR-10. Then we obtain t-SNE 2D embed-
dings from the outputs of three different layers as shown
in Fig. 2.

As can be seen, features extracted from shallow layers
are mixed together regardless of their classes. Conversely,
features extracted from the last convolutional layer and
the fully connected layer are clustered together if they
belong to a same class, and separated from each other if
they are from different classes. This observation indicates
deeper features are more useful than shallow features for
KNN, which is consistent with the curve shown in Fig. 6.
Meanwhile, the recovery rate of using the last convolution
layer as embeddings outperforms the others. We believe
the fully connected layer is not suitable for label recov-
ery either, because it is directly related to the logit layer,
which is highly likely to be corrupted during training on

noisy dataset.

methods CE Joint Opt Pencil SelKNN
accuracy (%) 68.8 72.23 73.49 76.78

Table 3: Compare proposed method with baselines on Cloth-
ing1M.

4.7 Experiments on Real-world Noisy
Dataset

Finally, we test our approach on Clothing1M
database [32], a large real-world dataset composed
of clothing images crawled from online shopping web-
sites. Clothing1M comprises 1 million images with
real noisy labels with additional 48 thousands verified
clean data for training. Its overall noise proportion is
approximately 38%. We adopt Resnet-50 pretrained
on ImageNet as backbone. The data preprocessing
procedure includes resizing the image with a short edge
of 256 and randomly cropping a 224×224 patch from
the resized image. We use the Adam optimizer and the
weight decay factor is 0.005. The initial learning rate is
0.002 and decreased by 10 every 5 epochs. The batch
size is 64.

Since the dataset is very large, it is not practical to
search KNN across all the data samples. Therefore we
only apply SelKNN for label correction, where the top
10,000 images are selected from each class as reference.
There are 14 classes, thus in every round of label correc-
tion, our KNN database has 140,000 images in total. We
set k = 500 and use L2 distance metric with majority
voting for classification. We perform in total 5 training
episodes and label updates, where each episode contains
15 epochs. The comparison with other 4 approaches is
shown in Table 3. Our method achieves state-of-the-art
accuracy and is more than 3% higher than the second best
method.

5 Conclusion
In this paper, we propose k-nearest neighbor based iter-
ative label correction framework for learning on the cor-
rupted dataset. The approach is effective due to the ro-
bustness nature of KNN. We apply iterative retraining af-
ter every round of label correction to escape from over-
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fitting. To further mitigate the impact of wrong labels,
we use loss ranking to select clean samples as reference
for KNN classification. We have conducted abundant ex-
periments on both synthetic and real-world datasets. Em-
pirical results show that our SelKNN algorithm achieves
state-of-the-art performance. An interesting related direc-
tion is to study how to leverage deep KNN to defend back-
door attack [6].
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