
Deep Neural Network and Transfer Learning for Accurate
Hardware-Based Zero-Day Malware Detection

Zhangying He
California State University, Long Beach

mandy.he@student.csulb.edu

Amin Rezaei
California State University, Long Beach

amin.rezaei@csulb.edu

Houman Homayoun
University of California, Davis
hhomayoun@ucdavis.edu

Hossein Sayadi
California State University, Long Beach

hossein.sayadi@csulb.edu

ABSTRACT
In recent years, security researchers have shifted their attentions
to the underlying processors’ architecture and proposed Hardware-
Based Malware Detection (HMD) countermeasures to address inef-
ficiencies of software-based detection methods. HMD techniques
apply standardMachine Learning (ML) algorithms to the processors’
low-level events collected from Hardware Performance Counter
(HPC) registers. However, despite obtaining promising results for
detecting known malware, the challenge of accurate zero-day (un-
known) malware detection has remained an unresolved problem in
existing HPC-based countermeasures. Our comprehensive analysis
shows that standard ML classifiers are not effective in recognizing
zero-day malware traces using HPC events. In response, we propose
Deep-HMD, a two-stage intelligent and flexible approach based on
deep neural network and transfer learning, for accurate zero-day
malware detection based on image-based hardware events. The
experimental results indicate that our proposed solution outper-
forms existing ML-based methods by achieving a 97% detection rate
(F-Measure and Area Under the Curve) for detecting zero-day mal-
ware signatures at run-time using the top 4 hardware events with
a minimal false positive rate and no hardware redesign overhead.

CCS CONCEPTS
• Security and privacy→ Intrusion/anomaly detection and
malware mitigation; Security in hardware.

KEYWORDS
Deep Learning, Hardware-BasedMalwareDetection,Machine Learn-
ing, Transfer Learning, Zero-Day Attack

ACM Reference Format:
Zhangying He, Amin Rezaei, Houman Homayoun, and Hossein Sayadi. 2022.
Deep Neural Network and Transfer Learning for Accurate Hardware-Based
Zero-Day Malware Detection . In Proceedings of the Great Lakes Symposium
on VLSI 2022 (GLSVLSI ’22), June 6–8, 2022, Irvine, CA, USA. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3526241.3530326

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9322-5/22/06. . . $15.00
https://doi.org/10.1145/3526241.3530326

1 INTRODUCTION
Malicious software (also known as malware) is an emerging cyber-
attack that is usually bundled with seemingly legitimate programs
to lure incautious users [5, 21]. Recently, Hardware-Based Mal-
ware Detection (HMD) techniques have emerged as a promising
substitute to overcome the inefficiencies and performance over-
heads of conventional software-based detection strategies. HMD
techniques leverage low-level hardware events that are monitored
via Hardware Performance Counters (HPCs) registers [4, 14, 17,
19, 20, 22, 23, 26]. HPCs are specialized registers built in modern
microprocessors to collect the hardware events of running appli-
cations [6, 27]. HMD methods train standard Machine Learning
(ML) algorithms on HPC events to develop accurate classifiers for
detecting signatures of malicious software. Machine learning has
recently gained a tremendous attention of researchers due to its
potential to learn the hidden representation from the abundant data
and to automate complex classification tasks [9, 16]. Previous HMD
works have shown the effectiveness of standard ML techniques for
detecting known malware patterns. However, as highlighted below,
we identify some major challenges of existing HPC-based detection
methods and propose a deep learning-based solution to realize an
effective and accurate hardware-based zero-day malware detection.

Challenge 1: Determining Key Hardware Events. Identifying the
most prominent low-level events is an essential step for effective
hardware-based malware detection [19, 20]. There exist numerous
events in modern microprocessors, each representing a different
functionality; thus, monitoring all of them leads to data with high
dimensionality. Moreover, analysis of such a raw dataset would
result in a high computational complexity and delay [15] making
it less feasible for efficient HMD solutions. Therefore, as different
HPC events are employed for various purposes, it is important to
effectively determine the most suitable hardware events to develop
accurate ML-based countermeasures for malware detection.

Challenge 2: Detection of Zero-Day Malware. Zero-day attacks ex-
ploit potentially serious software security vulnerabilities that are
undocumented (unknown) in the database of the detection mecha-
nism [1]. Lack of signature history or clear remediation strategy
has made detection of zero-day malware a long-standing challenge
for anomaly detection in securing modern computer systems. In
addition, existing ML-based detection methods have ignored the
challenging problem of zero-daymalware detection. Therefore, they
are inherently unscalable and inflexible, as the inclusion of any new

Session 1B: Emerging Computing and Post-CMOS Technologies GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

27

https://doi.org/10.1145/3526241.3530326
https://doi.org/10.1145/3526241.3530326

malware types would require training of new models hardening
the efficiency and applicability of the solution.

Challenge 3: High False Positive Rate. Conventional ML-based mal-
ware detection methods also suffer from a high false positive rate
issue in which the benign application is classified as malware.When
detecting unknown malware the ML models are often confused
benign as malware. Our experiments across different branches of
standard ML algorithms demonstrate that standard MLmodels used
in existing HMDs falsely detect benign applications as malware
on zero-day test with a significantly high false positive rate on an
average across different algorithms. Thus, this challenge creates a
disruption and low accuracy to the security countermeasure against
emerging cyber-attacks that needs to be addressed urgently.

Our comprehensive examination across different types of mal-
ware and machine learning algorithms used for HPC-based mal-
ware detection indicates that standard machine learning classifiers
(widely used in prior works) fail in recognizing the signature of
zero-day (unknown) malware with a high detection performance
and low false positive rate. In particular, the results show a clear
performance degradation for standard ML classifiers used for HPC-
based zero-day malware detection. In response to the challenges
and deficiencies of existing ML-based malware detection solutions,
we first identify the most prominent hardware events for accurate
HPC-based malware detection using an effective feature selection
technique based on Mutual Information (MI) method.

Next, we propose Deep-HMD, a two-stage Deep Neural Network
(DNN)-based approach for accurate and effective hardware-based
zero-daymalware detection.Deep-HMD first transforms HPC-based
malware and benign data to images, and then leverages a light-
weight deep learning approach to obtain a high malware detection
performance (for both known and unknown tests) despite using a
small number of hardware events captured at run-time by existing
HPCs. To the best of our knowledge, Deep-HMD is the first DNN-
based framework for accurate hardware-based zero-day malware
detection that enables a lightweight and efficient transfer learning
strategy on HPC-based data of new malware types (in an image
format), therefore, it is extensible and generalizable.

2 PROPOSED METHODOLOGY
This section presents the proposed two-stage deep learning-based
approach for accurate hardware-based zero-day malware detection.

2.1 Feature Engineering
In our experiments, the benign and malware programs are profiled
on an Intel Xeon X5550 machine. To effectively address the non-
determinism and overcounting issues of HPC registers in hardware-
based security analysis discussed in recent works [3, 28], we have
extracted low-level CPU events available under Perf tool using
a static performance monitoring approach where we can profile
applications several times measuring different events each time.
HPC events are monitored with a sampling time of 10ms within
Linux Containers (LXC) as an isolated profiling environment. More
than 5,000 benign and malware applications are executed for data
acquisition. Benign applications include real-world applications
comprising MiBench [7] and SPEC2006 [10], Linux system pro-
grams, browsers, and text editors. Malware applications, collected

Figure 1: Top 16 HPC features’ accumulated mutual information
gain to Y. The more blue highlight, the more contribution of the
feature to the label Y.

from and categorized by VirusShare and VirusTotal online reposito-
ries, comprise nine types of malware including worm, virus, botnet,
ransomware, spyware, adware, trojan, rootkit, and backdoor.

As highlighted before, feature selection (e.g., analyzing the im-
portance of the hardware events) is an important step in developing
accurate ML models for hardware-based malware detection [21, 22].
To address the Challenge 1 of existing HMD methods, we employ
Mutual Information (MI) method in information theory to analyze
the HPC events and select the most prominent features. We use
Scikit Learn library’s𝑚𝑢𝑡𝑢𝑎𝑙_𝑖𝑛𝑓 𝑜_𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 algorithm [18] to esti-
mate MI from k-nearest neighbor statistics [13]. Regarding features
X and label Y, the MI measure 𝐼 (𝑋,𝑌) is obtained by estimating the
marginal entropies 𝐻 (𝑋), 𝐻 (𝑌), and the joint entropy 𝐻 (𝑋,𝑌) as
follows:

𝐼 (𝑋,𝑌) = 𝐻 (𝑋) + 𝐻 (𝑌) − 𝐻 (𝑋,𝑌) (1)
For each data point 𝑖 , the MI method computes 𝐼 𝑖 based on its

neighboring data points. It first finds the k-closest neighbors falling
inside of the distance to point 𝑖 . Using𝜓 (·) as the digamma function,
𝑁 is the total samples, 𝑁𝑥𝑖 is the data sample falling within the
distance𝑑 with𝑘 neighbors, and𝑚𝑖 is the total number of neighbors
in the dataset. The estimated MI is defined as below:

𝐼 𝑖 = 𝜓 (𝑁) −𝜓 (𝑁𝑥𝑖) +𝜓 (𝑘) −𝜓 (𝑚𝑖) (2)

Figure 1 illustrates the heatmap of the top 16 features from our
MI implementation. We select the top four hardware events that
show significant accumulated information gains to train a model,
considering that most modern microprocessors’ counters can only
monitor a limited number of events at once during applications
execution time [19, 20]. The selected four hardware events include
node-loads, LLC-loads, L1-dcache-load-misses, and mem-stores.
2.2 Machine Learning Classifiers
2.2.1 Standard ML Classifiers. We examine the suitability of vari-
ous standard machine learning classifiers for known and unknown
malware detection. These ML models include RandomForest (RF),
DecisionTree (DT), Gaussian Naive Bayes (GNB), Logistic Regres-
sion (LR), ExtraTreeClassifier (ExtraTree), RidgeClassifier (Ridge),
KNN, SVM, and BaggedDT. These ML models cover a diverse range
of algorithms and the final predictor can be a binary classification
model which is aligned with the malware detection task.

Session 1B: Emerging Computing and Post-CMOS Technologies GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

28

2.2.2 Deep Neural Network (DNN). Traditional ML classifiers are
primarily used to train on structured data such as tabular data
stored in CSV files or relational databases. On the other hand, Deep
Neural Networks (DNNs) are most commonly used on unstructured
data such as images and natural language processing. Computer
vision-based DNN models can recognize hierarchical relationships
in analyzing simple to complex features, and characterize the visual
system as a hierarchical and feedforward system. While the neu-
rons in the early layers of a DNN have small receptive fields and
are sensitive to local features, they can capture more generalized
patterns in deeper layers. Recent results of very deep neural net-
works from the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) have shown that the neural network can achieve a top
5 error rate of 3.57%. Inspired by computer vision applications, in
this work we leverage DNN to develop an accurate and intelligent
malware detection framework based on image-based HPC data.
2.2.3 Transfer Learning. Recent studies have reported that a well-
trained DNN could transfer its knowledge of generalized features
and feature extraction ability from one domain to another. The
work in [12] highlight that transfer learning can also share the
architecture-related parameters in a new field while maintaining a
high-performance rate. Notably, they present that a CNN architec-
ture can transfer its knowledge trained on the ImageNet domain to
a new problem domain with high accuracy and stable results. Moti-
vated by such advances, in this work we develop a transfer learning
strategy combined with a DNN model in zero-day hardware-based
malware detection. ImageNet is significantly different from mal-
ware and benign datasets, where ImageNet contains more generic
images in everyday lives. In contrast, malware and benign datasets
have numerical features from the processor’s HPC events. Our work
is the first in the field that explores the functionality and effective-
ness of leveraging DNN network transferred from ImageNet to the
tabular-like zero-day malware detection domain based on only a
few hardware tracing events monitored at run-time.

2.3 Overview of Deep-HMD Framework
In this work, we propose Deep-HMD framework to address the
Challenges 1 & 2 of existing HMD methods and to overcome the
limitations of standard ML classifiers in detecting zero-day mal-
ware. To this aim, we first explore the performance of standard
ML classifiers trained with the most prominent HPC events. We
train the ML models with default parameter settings as our base
learners. We then examine the models across various metrics on the
known test and zero-day test datasets. The ML classifiers are im-
plemented using scikit-learn [18] and are used to analyze how well
they can perform on known and zero-day test datasets. Next, given
the weak performance of ML models (as we will show in Section 3),
we present the Deep-HMD framework as the target hardware-based
zero-day malware detector.

We investigate state-of-art deep learning model architecture that
has trained over ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC). ILSVRC uses the smaller portion of the ImageNet
which consists of 1000 categories with a total of 1.3 million train-
ing images, 50,000 validation images, and 100,000 testing images.
There are several advantages in using transfer learning. Firstly, the
pre-trained model has already learned to recognize patterns from
millions of images. Secondly, training from scratch requires a larger

dataset and high training time, while using a pre-trained model and
transfer learning can maintain high accuracy when fine tuned in a
new field. The work in [25] studied that among the many popular
DNN networks, ResNet is an appropriate choice in network-based
deep transfer learning. ResNet is a convolutional neural network
that implements residual blocks of “skip connections” to alleviate
the issue of vanishing gradient by setting up an alternate short-
cut for the gradient to pass through. In addition, they enable the
model to learn an identity function. This ensures that the higher
layers of the model do not perform any worse than the lower layers.
ResNet is also a simple architecture such that residual blocks do not
add any major complexity to the network so that all the common
optimization methods can be used in training residual networks.
Therefore, we implemented our proposed transfer learning scheme
based on ResNet18 which has 18 layers in total.

2.3.1 Threat Model. Recent ML-assisted malware detection meth-
ods using HPC events have mainly considered two major validation
methods including cross validation and percentage split to exam-
ine the effectiveness of their models. The cross validation method
splits the dataset into 𝐾 (1, ..., 𝑛) folds and selects one of them as
a target testing dataset while the rest of the folds are used for the
training dataset. And in the percentage split method, the dataset
is divided into two sections based on the percentage setting allo-
cated to training and the other to the testing set. However, the
major issue with these validation techniques is that the testing data
is split from the large dataset and is part of the same data type
used in the training dataset. Hence, such validation methods could
not imitate the zero-day or unknown testing scenarios occurring
in real-world applications in which the trained machine learning
classifiers should have never seen the testing dataset.

To model the zero-day malware threat type in our experiments,
among all nine malware types, we held out all of the four types
of malware from rootkit, backdoor, virus, and ransomware as the
target zero-day test data. These four types of malware are not pre-
sented in the training and known test datasets, thus, the zero-day
malware set is totally unknown from the training dataset. For be-
nign, we held out 30% of all benign data aside as a zero-day test
benign dataset. We kept both malware and benign aside to imitate
the zero-day testing in real-world scenarios where the malware is
undocumented in the training database of the detection mechanism.
The rest of the five types of malware including trojan, spyware,
botnet, worm, and adware as well as the rest of benign samples are
considered for training and known test purposes, and we randomly
split them into 70% for training and 30% for known testing. The dif-
ference between known-test and zero-day-test in our experiments
is that the known-test data contains the same malware types with
the training dataset but with different unseen data and the zero-day-
test data contains different malware types from the training dataset
that are considered as new unknown attacks. After data are split, we
relabel all types of malware as malware and leave benign as benign.
Notably, our Deep-HMD framework uses the same datasets during
training, known-test, and zero-day test same as all classifiers. Also,
classical ML models use the tabular format data, and Deep-HMD
employs the image data converted from corresponding tabular data.

2.3.2 Architecture of Deep-HMD. Deep-HMD is a two-stage intel-
ligent and salable framework that achieves an accurate and robust

Session 1B: Emerging Computing and Post-CMOS Technologies GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

29

Unknown (Zero-day) HPC data

HPC-based Tabular Training
Data (Benign vs. Malware)

2D Embedded Image Data
Source Deep Learning Model

Benign

Malware

Transferring
Features

Efficient Zero-day
Attack Detector

Target Detection Model

Benign

Malware

2D Embedding Image Features Conversion from Hardware Events Intelligent Hardware-Based Zero-Day Malware Detector Implementation

Testing

Training

Deep Neural Network (DNN) Top hardware events [HPC1..HPC4]
monitored by Perf tool

…

Figure 2: Overview of Deep-HMD, the proposed zero-day malware detection framework using 4 selected hardware events.

zero-day malware detection performance. The general overview
of the Deep-HMD is depicted in Figure 2. As seen, during the first
level theDeep-HMD converts tabular malware and benign hardware
events data (that are monitored from the underlying processor) to
image formatted data using an effective 2D embedding image fea-
tures conversion method. A deep neural network can train on both
tabular and image data. However, DNN-based architectures on im-
ages have achieved far-reaching performance with high top 1/top
5 accuracy and low top 5 error rates. Next, Deep-HMD leverages a
high performance ResNet architecture to recognize the zero-day
malicious images at run-time. The work in [24] presented a method
that projects features in tabular format into two-dimensional images
before feeding images to fine-tune CNN models. However, there
exist no similar experiments on the application of such methods
in detecting the signatures of unknown malware and in particular
with the emphasis on developing effective security countermea-
sures at the processors’ hardware level. Our Deep-HMD method
explores this space by employing a novel deep neural network and
transfer learning training strategy on image-based hardware events
data to achieve state-of-the-art performance for zero-day malware
detection using a limited number of HPC events.

Algorithm 1 Converting Tabular Data to 2D Images
Input: HPC features in tabular format X = {x1,x2,x3,x4}
Output: image data equivalent to X
repeat

forall for each row of X={x1, x2, x3, x4} do
normalize HPCs to range [-1,+1]
set font size as 50, resolution as 256 x 256 x3
set 2 columns 2 rows per image
apply OpenCV’s cv2.putText() to draw HPC number on image
save converted image to folder

end
until all rows of fitted tabular data are converted to images

Stage 1 in Deep-HMD: In its first stage, our proposed HMD frame-
work employs the encoding method described in Algorithm 1 to
convert each row of 4 HPC tabular data to one image data. We
firstly normalized all rows of data using the standard scaler in the
Scikit Learn, which removes the mean and scales the data to unit
variance. Next, we use OpenCV [2] library to evenly project the
four numeric data to a 256 x 256 x 3 resolution image with equal
spacing and no-overlapping.

Stage 2 in Deep-HMD: The second step includes using the gener-
ated image data as inputs to train an accurate and effective DNN-
based model for zero-day malware detection. We implement Deep-
HMD with a customized transfer learning training strategy based
on the ResNet18 architecture [8]. Algorithm 2 describes the training

process in Deep-HMD. In this stage, the generated two-dimensional
images are resized to 224 x 224 x 3 and fed into the Deep-HMD
network initialized with the ImageNet pre-trained weights. As de-
scribed further in the next subsection, we remove the last output
layer first and reshape the last layer to two output nodes. We then
fine-tune the whole network over malware and benign datasets,
and perform known and zero-day test.
Algorithm 2 Training Process in Deep-HMD

Input: HPC features in tabular format X, and target label Y
Output: Deep-HMD DNN Model for Binary Classification
Feature Selection:
forall tabular HPC-based dataset do

calculate MI by applying scikitlearn mutual_info_classif on all HPC features
select top 4 features and fit to whole dataset
train/known test/zero-day test split on fitted dataset

end

Image Conversion: - see Algorithm 1
while training do

load batch data, resize images to 224 x 224 x3 and initialize ImageNet parameters
while validation loss >training loss do

for every 7 to 20 epochs:
apply cyclical learning rate (clr) to find optimized learning rate (lr)
apply found lr to the next training steps (7-20 epochs)

end
save model

end

2.4 Training and Testing in Deep-HMD
Figure 3 demonstrates the overall training and testing process of
Deep-HMD in four steps. Steps 1 and 2 are dedicated to the training
process, and steps 3 and 4 are for the testing phase.

In Step 1 , we first examine how the baseline model of the
Deep-HMD performs on our known and zero-day test datasets. To
this aim, we load the ImageNet parameter of Deep-HMD in fast.ai,
run two tests, and calculate various metrics. Fast.ai [11] is a deep
learning library with PyTorch as its underlined backbone that can
quickly train high-performance deep learning models and supports
application domains in computer vision, natural language process-
ing, and tabular models. The baseline of Deep-HMD tests how much
knowledge it learns from ImageNet on generic features such as
lines and strokes. We found it can detect 92% of benign applications
but only 6% of actual malware. This experiment indicates that the
pre-trained model trained on a sizeable ImageNet has obtained
the valuable knowledge of finding a generic spatial relationship in
images. With fine-tuning model parameters on malware dataset, it
continues to learn on domain knowledge, particularly the pattern
of malware from benign. In particular, we examine the possibility of
transferring the knowledge of pattern recognition to a new domain
with a limited number of training samples and fast training time.

Session 1B: Emerging Computing and Post-CMOS Technologies GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

30

Figure 3: Overview of training and testing steps in Deep-HMD.

During Step 2 , we load the pre-trained baseline model with the
ImageNet parameter, remove the last layer of the network, replace it
with a Softmax function that outputs binary classification, and train
the architecture. Firstly, we train it for five steps with a batch size
of 64 to find an optimized learning rate for the next training cycle.
In this step, generic features learned from ImageNet are transferred
to the Deep-HMD network. In the customized training, we apply
cyclical learning rates, oversampling, and weight decay techniques.
We monitor training loss and validation loss decreasing until the
validation loss is close to the training loss. We save checkpoints
periodically and use the best model for the testing phase.
2.4.1 Cyclical Learning Rates. The learning rate strategy could
have a significant impact on the effectiveness of model training. We
use the fast.ai wrapper library [11] with the plain PyTorch backbone
and applied the cyclical learning rate technique to find the most
optimal learning rate for every several training steps. We set each
training cycle with seven to twenty epochs depending on how
soon we observe it stops learning by monitoring the validation loss
and validation accuracy as depicted in Figure 4. We apply fast.ai’s
learning rate finder, set the start learning rate of 0.0001 to an end
learning rate for 100 epochs, and stop in the case of divergence.
Then, we apply the best learning rate range in the next training
cycle. The validation accuracy starts to grow and stabilize from
epoch 4, as shown in Figure 4. As a result, the best performing
model is selected for the testing phase.

Figure 4: Applied cyclical learning rate (CLR) during training. The
left figure shows the training loss and validation loss, and the right
figure depicts the validation accuracy during training.

2.4.2 Over Sampling for Imbalanced Datasets. To overcome the
challenges associated with the imbalanced dataset samples and
remove the potential bias towards the majority class (benign in our
case), we apply the oversampling technique during the training
process. Oversampling technique involves duplicating examples
from the minority class and adding them to the whole training
dataset to create a more balanced training dataset. During each
epoch, samples from the minority class are selected randomly with

replacement. Once the training epoch completes, they are released
back to the original dataset to be chosen again in the following
training epochs. Doing so over the minority class dataset creates a
more balanced training dataset for all classes and helps with model
convergence in our Deep-HMD network.

In Steps 3 and 4 , we convert the same sets of HPC data stored
in tabular format to images and store the images into sub-folders
of malware or benign. In fast.ai, we load the pre-trained Deep-HMD
model, resize the input image to 224 x 224 x 3, and then run in
the batch size of 64 images to process the prediction. Lastly, we
accumulate the predictions, calculate the zero-day test metrics, and
report the zero-day test results in the experimental results section.
3 EXPERIMENTAL RESULTS
In this section, we evaluate the effectiveness of the proposed mal-
ware detection approach. As described in Section 2, various ML
models are implemented and tested using both known and un-
known zero-day datasets to explore the feasibility of the standard
learning classifiers in detecting malware based on hardware events.
Thus, to further highlight the challenge of unknown malware detec-
tion, we have evaluated the standard ML classifiers that are widely
used in state-of-the-art HMD methods considering both known
and unknown conditions.

The F-measure (F1-score) results for known and zero-day mal-
ware detection (with 4 HPC events) are shown in Figure 5. As
observed, the performance of standard ML models on zero-day
attack detection substantially drops by more than 40% in GNB, Lo-
gistic Regression, Ridge, and SVM classifiers. When examined by
the unknown (zero-day) test data, the trained machine learning
classifiers have never seen the testing malware types. Even for the
most robust ML model, Random Forest, the F-measure for zero-day
malware drops by 14% as compared with the scenario of detecting
known malware. The results confirm the limitation of standard
ML algorithms in recognizing the signatures of unknown malware
using HPC events and further highlights the importance of propos-
ing an effective mechanism to enhance the detection rate of the
hardware-based zero-day malware detection process.

Figure 5: Evaluation of standard ML classifiers for known and un-
known (zero-day) malware detection.

Table 1 reports the performance results of Deep-HMD versus
different ML-based detectors for zero-day malware detection using
4 HPC events. We choose the ML-based detectors that are widely
been adopted in existing HMD techniques. We trained the most
robust machine learning classifiers over the tabular data, and ap-
plied the Deep-HMD network on the two-dimensional embedded
image data generated from the same tabular dataset that has been
fed to the standard ML classifiers. As the results indicate, our pro-
posed Deep-HMD achieves 97% in F-measure, 97% in Area Under the

Session 1B: Emerging Computing and Post-CMOS Technologies GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

31

Table 1: Performance results of Deep-HMD and various ML-based
detectors for zero-day malware detection

Model Accuracy F1 AUC TPR FPR TNR Precision Recall

Deep-HMD 0.98 0.97 0.97 0.99 0.01 0.97 0.96 0.99
RandomForest 0.87 0.79 0.87 0.68 0.32 0.98 0.94 0.68
DecisionTree 0.81 0.69 0.79 0.58 0.42 0.94 0.86 0.58
GNB 0.62 0.14 0.40 0.09 0.91 0.92 0.38 0.09
Logistic Regression 0.62 0.14 0.40 0.09 0.91 0.92 0.39 0.09
ExtraTreeClassifier 0.74 0.54 0.70 0.41 0.59 0.93 0.78 0.41
RidgeClassifier 0.63 0.18 0.46 0.11 0.89 0.93 0.48 0.11
KNN 0.83 0.72 0.81 0.61 0.39 0.95 0.87 0.61
SVM 0.64 0.15 0.49 0.09 0.91 0.96 0.56 0.09
BaggedDT 0.82 0.69 0.82 0.56 0.44 0.97 0.92 0.56

Figure 6: ROC curves of Deep-HMD as compared with standard ML
models for zero-day malware detection using 4 hardware events.

Curve (AUC), and 98% accuracy for unknown malware detection. In
addition, it obtains 96% in precision and 99% in recall. Whereas, the
best performing standard ML classifier, Random Forest, can only
achieve 79% in F-measure, 87% in AUC and accuracy, and 68% in
recall when used for detecting unknown malware.

Overall, the results show that our proposed zero-day hardware-
based malware detection method, Deep-HMD, is the most accurate
model among all tested classifiers. While achieving an F-measure of
97% on the unknown zero-day test, Deep-HMD also offers 99% true
positive rate and only 1% false positive rate, which is significantly
outperforming the best standard ML (RF classifier) results with 68%
true positive rate and 32% in false positive rate.

Furthermore, Figure 6 illustrates the ROC curves of zero-day
malware detectors with Deep-HMD represented by the solid green
line against all other classifiers. As observed, Deep-HMD achieves a
higher detection rate than other classifiers on unknown zero-day
malware detection, thanks to its ability to lower the false positive
rate significantly. The dotted orange line for Random Forest as the
best classical ML algorithm show an AUC of 0.87. Our proposed in-
telligent method improves the ROC curve for the zero-day test from
0.87 in the Random Forest classifier to 0.97, with a 11% enhance-
ment, highlighting the effectiveness of Deep-HMD in improving the
robustness of the zero-day malware detection process.

4 ACKNOWLEDGMENT
This research was supported by the 2021-2022 COE RSCA, and
ORSP Multidisciplinary Research Awards from CSULB.

5 CONCLUSION
In this work, we examined the applicability of various standard
machine learning classifiers for hardware-based zero-day malware
detection and demonstrate that such methods are not capable of
detecting the unknown malware patterns with a high detection per-
formance and low false positive rate. This is because the zero-day
malware HPC data does not match any seen attack applications’

signatures in the existing database, which makes it a more chal-
lenging problem to address. In response, we proposed Deep-HMD,
a two-stage DNN-based approach equipped with a flexible transfer
training strategy, to accurately detect zero-day malware using a
small number of hardware events. The experimental results demon-
strated the superior performance of our novel intelligent solution
as compared to state-of-the-art ML-based detection methods. The
Deep-HMD method is capable of recognizing unknown malware
signatures with 97% in both F-measure and AUC metrics using a
limited number of HPC events and with only 1% false positive rate.

REFERENCES
[1] L. Bilge and T. Dumitraş. 2012. Before We Knew It: An Empirical Study of

Zero-Day Attacks in the Real World. In CCS’12 (CCS ’12). ACM, 833–844.
[2] G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools

(2000).
[3] S. Das et al. 2019. SoK: The Challenges, Pitfalls, and Perils of Using Hardware

Performance Counters for Security. In IEEE SP. 20–38.
[4] J. Demme et al. 2013. On the Feasibility of Online Malware Detection with

Performance Counters. In ISCA’13. ACM, 559–570.
[5] A. AE Elhadi et al. 2012. Malware detection based on hybrid signature behaviour

application programming interface call graph. American Journal of Applied
Sciences 9, 3 (2012), 283.

[6] Y. Gao et al. 2021. Adaptive-HMD: Accurate and Cost-Efficient Machine Learning-
Driven Malware Detection using Microarchitectural Events. In IOLTS’21. IEEE,
1–7.

[7] M. R. Guthaus et al. 2001. MiBench: A free, commercially representative embedded
benchmark suite. In IISWC’01. 3–14.

[8] K. He et al. 2016. Deep Residual Learning for Image Recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 770–778.

[9] Z. He et al. 2021. When machine learning meets hardware cybersecurity: Delving
into accurate zero-day malware detection. In ISQED’21. IEEE, 85–90.

[10] J. L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. SIGARCH Comput.
Archit. News 34, 4 (Sept. 2006), 1–17.

[11] J. Howard et al. 2021. fastai. https://github.com/fastai/fastai.
[12] Simon Kornblith et al. 2019. Do Better ImageNet Models Transfer Better?

arXiv:1805.08974 [cs.CV]
[13] A. Kraskov et al. 2004. Estimating mutual information. Phys. Rev. E 69 (Jun 2004),

066138. Issue 6. https://doi.org/10.1103/PhysRevE.69.066138
[14] Prashanth Krishnamurthy et al. 2019. Anomaly detection in real-time multi-

threaded processes using hardware performance counters. IEEE Transactions on
Information Forensics and Security 15 (2019), 666–680.

[15] H. Liu et al. 2012. Feature selection for knowledge discovery and data mining.
Vol. 454. Springer Science & Business Media.

[16] H. M. Makrani et al. 2021. Adaptive Performance Modeling of Data-Intensive
Workloads for Resource Provisioning in Virtualized Environment. ACM ToMPECS
5, 4, Article 18 (mar 2021), 24 pages.

[17] M. Ozsoy et al. 2015. Malware-aware processors: A framework for efficient online
malware detection. In HPCA’15. 651–661.

[18] F. Pedregosa et al. 2011. Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research 12 (2011), 2825–2830.

[19] H. Sayadi et al. 2018. Ensemble learning for effective run-time hardware-based
malware detection: A comprehensive analysis and classification. In DAC’18. 1–6.

[20] H. Sayadi et al. 2019. 2SMaRT: A Two-Stage Machine Learning-Based Approach
for Run-Time Specialized Hardware-Assisted Malware Detection. In DATE’19.
728–733.

[21] H. Sayadi et al. 2020. Recent Advancements in Microarchitectural Security:
Review of Machine Learning Countermeasures. In MWSCAS’20. 949–952.

[22] H. Sayadi et al. 2020. StealthMiner: Specialized Time Series Machine Learning
for Run-Time Stealthy Malware Detection Based on Microarchitectural Features.
In GLSVLSI’20. 175–180.

[23] B. Singh et al. 2017. On the Detection of Kernel-Level Rootkits Using Hardware
Performance Counters. In ASIACCS’17. 483–493.

[24] Baohua Sun et al. 2019. SuperTML: Two-Dimensional Word Embedding for the
Precognition on Structured Tabular Data. arXiv:1903.06246 [cs.CV]

[25] Chuanqi Tan et al. 2018. A Survey on Deep Transfer Learning. In ICANN 2018,
Věra Kůrková et al. (Eds.). Springer, Cham, 270–279.

[26] A. Tang et al. 2014. Unsupervised Anomaly-Based Malware Detection Using
Hardware Features. In RAID’14. Springer, 109–129.

[27] H. Wang et al. 2020. Mitigating cache-based side-channel attacks through ran-
domization: A comprehensive system and architecture level analysis. In DATE’20.
IEEE, 1414–1419.

[28] B. Zhou et al. 2018. Hardware Performance Counters Can Detect Malware: Myth
or Fact?. In ASIACCS’18. 457–468.

Session 1B: Emerging Computing and Post-CMOS Technologies GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

32

https://github.com/fastai/fastai
https://arxiv.org/abs/1805.08974
https://doi.org/10.1103/PhysRevE.69.066138
https://arxiv.org/abs/1903.06246

	Abstract
	1 Introduction
	2 Proposed Methodology
	2.1 Feature Engineering
	2.2 Machine Learning Classifiers
	2.3 Overview of Deep-HMD Framework
	2.4 Training and Testing in Deep-HMD

	3 Experimental Results
	4 Acknowledgment
	5 Conclusion
	References

