
DK Lock: Dual Key Logic Locking Against
Oracle-Guided Attacks

Jordan Maynard
Computer Engineering & Computer Science Department

California State University Long Beach
Long Beach, CA, USA

jordan.maynard@student.csulb.edu

Amin Rezaei
Computer Engineering & Computer Science Department

California State University Long Beach
Long Beach, CA, USA
amin.rezaei@csulb.edu

Abstract—The semiconductor industry must deal with different
hardware threats like piracy and overproduction as a result of
outsourcing manufacturing. While there are many proposals to
lock the circuit using a global protected key only known to the
designer, there exist numerous oracle-guided attacks that can
examine the locked netlist with the assistance of an activated IC
and extract the correct key. In this paper, by adopting a low-
overhead structural method, we propose DK Lock, a novel Dual
Key locking method that securely protects sequential circuits with
two different keys that are applied to one set of key inputs at
different times. DK Lock structurally adds an activation phase
to the sequential circuit, and a correct key must be applied
for several cycles to exit this phase. Once the circuit has been
successfully activated, a new functional key must be applied to the
same set of inputs to resume normal operation. DK Lock opens
up new avenues for hardware IP protection by simultaneously
refuting the single static key assumption of the existing attacks
and overcoming the state explosion problem of state-of-the-art
sequential logic locking methods. Our experiments confirm that
DK Lock maintains a high degree of security with reasonable
power and area overheads.

Index Terms—Logic Locking, Logic Encryption, SAT Attack,
Logic Obfuscation, Sequential Circuits, Dynamic Key

I. INTRODUCTION AND BACKGROUND

The semiconductor chip business has numerous security
concerns, including piracy and overproduction, because every
Integrated Circuit (IC) often consists of several pieces from
different offshore foundries, each with its own set of potential
hardware hazards. Logic locking (a.k.a. logic encryption)
technique [1], which adds extra key inputs to a given netlist,
is a well-studied but yet highly fragile approach to preventing
unauthorized ICs from working. After the manufactured ICs
return from the foundry, the correct key, which is known only
to the designer, must be placed into a tamper-proof memory
to make the locked circuit operational.

Traditional logic locking schemes such as XOR-based [1]
and MUX-based locking [2] were found to be susceptible to the
SAT attack [3] that can report the correct key in a short time
with the help of an activated IC. This led to the development of
several SAT-resilient locking schemes for both combinational
and sequential circuits [4]–[36]. Despite the range of methods
used to uncover the original functionality and/or the correct
key of a locked circuit, all the existing attacks [37]–[52] have
one thing in common: they only search for a single globally

correct key. While SLED [35] uses dynamic key values that
change upon a chosen event in the circuit, it still utilizes a
single static set of values to activate the correct key sequence
and thus remains susceptible to existing attacks. Generally
speaking, any approach that employs an initial “seed” can
be vulnerable to state-of-the-art attacks because the seed
functions as a global key that, if discovered by the attacker,
can unlock the circuit easily and nullify the security.

Furthermore, in contrast to the commonality of sequential
circuits in the market, there are a relatively small amount of
sequential logic locking methods [32]–[36]. Several existing
sequential locking schemes use Finite State Machine (FSM)-
based approaches to hide IC functionality. HARPOON [32]
is a proposed scheme that adds extra states to the original
state transition graph which act as an authentication mode
requiring a correct sequence of inputs to reach the original
initial state. Active hardware metering [33] is another FSM-
based approach that adds “black hole” states which lock the
circuit in an inescapable state after the incorrect input sequence
is applied. JANUS-HD [34] uses a set of coherent synthesis
augmentations to achieve simultaneously high output corrupt-
ibility and pruning attack resilience. All of these methods
have been deciphered by sequential attacks like KC2 [52] and
RANE [50].

In addition, FSM locking uses a behavioral approach, mean-
ing that the outputs are computed as a function of the input
sequence. Adding authentication states using the behavioral
model leads to the state explosion problem. Our solution is
to use a structural approach instead of a behavioral one to
add locking functionality. Instead of adding states to the FSM,
leading to an abundance of new states that must be considered,
our activation logic is added structurally. This allows activation
to be achieved solely through key inputs without having to
worry about primary input sequences.

Our proposed logic locking method structurally adds an
activation phase in a given sequential circuit, and a correct
initial key must be applied for several cycles to exit this phase.
Once the circuit has been successfully “activated,” a new final
key must be applied to the same set of inputs for the circuit
to resume normal operation. To the best of our knowledge, no
locking scheme has been proposed with a fixed-size set of key
inputs that require the application of multiple distinct sets of



Fig. 1. DK Lock overview

(a) (b) (c)

Fig. 2. DK Lock structural modules (a) Activation counter FF (b) Functional logic (c) Integration examples

values to resume original functionality. This refutes the current
assumption that finding just one correct key will uncover the
original circuit functionality.

The state-of-the-art logic locking methods [4], [5], [7], [8]
operate on the assumption that the attacker has complete
access to the locked netlist. Furthermore, he/she can purchase
a functioning circuit from the market as an oracle and get
the correct outputs for given input vectors. Also, because
practically all ICs are sequential circuits, it is presumed the
attacker has access to the scan chain. This commonly known
attacker paradigm is taken into account in this research.
Despite there currently being no other dynamic key locks on
a static set of key inputs, we still assume that the attacker is
aware of the presence of two keys.

The main contributions of this paper are as follows:
• Proposing a novel logic locking scheme called Dual

Key (DK) Lock that refutes the single static global key
assumption of existing attacks.

• Overcoming the state explosion problem of state-of-the-
art FSM locking by following a structural approach
instead of an impractical behavioral one.

• Presenting the high security gain of the DK Lock against
existing attacks with low power and area overhead.

II. DUAL KEY LOCK

The main idea behind our proposed DK Lock is to use one
set of key inputs for two different keys during different phases
of operation. The activation phase can be characterized as a
sequential lock, while the functional phase uses combinational
locking. These two phases operate using the same set of key in-
puts, and they interact in a way that ensures the combinational
portion cannot be interacted with until the sequential portion

has been unlocked. An initial (i.e., activation) key must be
applied to the locked circuit for a chosen number of cycles to
“activate” the circuit. The circuit becomes activated and moves
into the functional phase when the activation logic triggers a
signal which changes the state of the functional logic. When
in the functional phase, a final (i.e., functional) key must be
applied to regain original circuit functionality. DK Lock is
implemented by the addition of three structural modules into
the circuit: activation logic, functional logic, and integration
logic. Fig. 1 depicts a high-level overview of the interaction
between the added lock and the original circuit.

A. Activation Phase

The activation logic is comprised of a key-controlled up-
counter with variable bit size and logic that determines when
the activation signal is triggered. The counter begins at “0”
and counts up when the correct key is applied. Once m
number of cycles is reached, the activation signal is triggered
and the circuit enters the functional phase. The user is able
to customize this logic by choosing the value m and the
corresponding number of bits for the counter. For example,
if m=9, and the counter size is four bits, then the circuit will
activate when the counter bits hold the binary value 1001.

At each Flip Flop (FF) input in the activation counter, 2-1
MUXs are added to allow key-controlled counting. Each MUX
main inputs are the correct counter signal and a low (i.e., “0”v)
signal, and a key bit drives the selector. When an incorrect key
bit is applied to the MUX of a certain FF, a low signal is fed
to that FF input. Thus, the counter will count up only when
the correct key is applied. Fig. 2a provides a low-level view of
an activation counter FF. Based on the correct key value, the



Algorithm 1: DK Lock algorithm
Input: Original netlist f(x), key size N , and # of

cycles M
Output: Locked netlsit g(x, k) and oracle h(x)
k∗a ← CreateCorrectKey(N );
// k∗

a is initial key

k∗f ← CreateCorrectKey(N );
// k∗

f is final key

g(x, k)← f(x);
i← 0;
while (i < N ) do

activation flipflop← NewActivationFF(k∗ai
,M );

Add(activation flipflop) to activation logic;
rand gate ← RandomGate(g(x, k));
key logic ← NewKeyGate(k∗fi );
Add(key logic) to g(x, k) at rand gate;
i ← i+ 1;

Add(activation logic) to g(x, k);
Add(functional logic) to g(x, k);
h(x)← g(x, k);
for (all key bits ki ∈ k) do

Remove(key inputi) from h(x);
fixed key mux← NewFixedKeyMux(k∗ai

, k∗fi );
Add(fixed key mux) to h(x);
key gatei ← fixed key mux;

return g(x, k), h(x);

MUX can be simplified to the AND of the key bit (or inverse
of the key bit) with the correct signal.

When a correct activation key is applied for the specified
m cycles, the activation counter’s FFs will hold the binary
value of m. The output of every FF is connected to a set of
gates which output an activation signal to the functional logic
once the binary value m is represented. This event triggers
the activation of the circuit and begins the second phase of
operation. A design consideration is that the value of m is not
stored in any internal memory as it is built into the customized
locking logic.

B. Functional Phase

The functional stage is characterized by the removal of
blocker signals to allow key gate propagation in the circuit.
A blocker is a signal which, when applied to a certain gate,
causes a fixed output (i.e., a stuck-at fault) regardless of other
gate inputs. Prior to circuit activation, each traditional key
gate inserted into the original circuit has additional gates at
its output. This added logic disallows the propagation of the
key gates and thus the correct signals to the rest of the circuit
during the activation phase. The functional logic interacts with
the circuit integration logic (i.e., key gates) and removes the
blockers once the functional stage is reached.

As shown in Fig. 2b, the functional logic consists of a
modified n-bit ring counter which does not change state

TABLE I
2-BIT FUNCTIONAL COUNTER STATES

Activation Phase Functional Phase
Current Next Current Next

00 00 00 01
00 00 01 10
00 00 10 11
00 00 11 01

until activated. This counter is designed with low overhead,
utilizing only n additional FFs. Once activated, the counter
will continuously cycle through FF values without returning
to the initial value set. Table I shows the states of a 2-bit
functional counter, as an example. These FFs are connected
to the blockers in key gate logic (W0 and W1), which is
integrated with the original circuit at randomly chosen places
(see Fig. 2c). Every state after activation allows propaga-
tion of traditional key gates, meaning the functional phase
is equivalent to traditional single-gate locking. One design
consideration is that the attacker does not know the initial
state of the functional counter. In the 2-bit functional counter
of Table I, “00” is the initial value set, but it can be any state
for different designs.

C. Integration With Original Circuit

As previously mentioned, the activation phase of operation
is completed by removing blockers from key gates. Two
examples with two blocker signals are shown in Fig. 2c. A
random signal from the original circuit X is chosen and the
depicted logic is added. W0 and W1 will act as blockers
during the activation phase, so both will have a logic low
before activation. This causes corruption at the output Y
regardless of the key input signal. During the functional phase,
Y will equal X only if the correct final key bit is applied.

The presence of these blockers disallows observation of final
key propagation to primary outputs of the circuit during the
activation phase. This is the facet of DK Lock which preserves
security of the final key while the initial key is being applied.
SAT-based techniques are unable to resolve both keys because
of their sequential application to the same set of inputs. The
transition from activation to functional phase allows for final
key propagation to primary outputs, but SAT-based attacks
alone are unable to reach this stage without returning UNSAT
model or an incorrect key.

In summary, activation and functional modules are con-
nected to the original circuit through randomly inserted key
logic. The addition of this logic along with a single set of
dynamic key inputs effectively locks the circuit from all the
state-of-the-art attacks that assume the existence of a single
correct key. The correct operation of the circuit will be delayed
until an initial key is applied for m cycles. Once the circuit
is past activation, a different final key must be applied to
the same set of key inputs to recover proper functionality.
Algorithm 1 shows the pseudo-code of DK Lock.



TABLE II
COMBINATIONAL ATTACKS ON THE LOCKED BENCHMARKS WITH DK LOCK

Benchmark Attacks
Set Benchmark Key Size SAT [3] CycSAT [37] Double-DIP [40]

Set 1 s27, s298, s349, s444, s510, s641, s713, s832, s953, s1196,
s1488, s5378, s9234, s13207, s15850

Fixed Key Size of 10 UNSAT UNSAT UNSAT

Set 2 s27, s298, s349, s444, s510, s641, s713, s832, s953, s1196,
s1488, s5378, s9234, s13207, s15850

6, 10, 21, 10, 27, 58, 59, 38, 40,
29, 28, 84, 13, 117, 98

UNSAT UNSAT UNSAT

Set 3 b01, b02, b03, b04, b06, b07, b08, b09, b10, b11, b12, b13,
b14, b15, b17

Fixed Key Size of 10 UNSAT UNSAT UNSAT

Set 4 b01, b02, b03, b04, b06, b07, b08, b09, b10, b11, b12, b13,
b14, b15, b17

2, 2, 4, 11, 2, 2, 2, 9, 2, 11, 7,
5, 10, 32, 36, 37

UNSAT UNSAT UNSAT

D. Obfuscation

One important security feature of our design is that the
number of cycles m is hidden from the attacker. Instead of
being stored in memory or somewhere the attacker may be
able to access, it is built in to the logic itself. This deters
SAT-based approaches further, adding many possibilities for
the attacker to consider.

The dynamic nature of the unblocking signals from func-
tional logic assist in obscuring key observability. Fixed state
FFs in an activation-based design are an obvious flag to at-
tackers, thus the addition of this characteristic to our structural
design. The changing states of the functional logic also open
flexibility for the design of key gate logic. The functionality
of the designs shown in Fig. 2c may be realized through
any number of unique layouts. By having several different
approaches to key-gate logic within the design, structural
analysis and removal attacks become more tedious for the
attacker. Varying the gate-level implementation of these facets
removes repetition within the design and hinders the attacker’s
ability to identify added logic by targeting repetition.

The functional counter logic is also more secure when the
size is expanded (i.e., more FFs). This allows for dynamic
states before and after activation, creating even further diffi-
culty for observation by the attacker. Additional obfuscation
currently implemented is a re-synthesis of the design which
mixes the locking logic into the original circuit. However, the
most beneficial approach would be a high-level transformation
of the data-flow with the objective of making the gate-level
design confusing to attackers. Identifying and tampering with
critical signals in the design would be infeasible due to the
obscurity of the logic. As a result, bypassing any part of the
locking would prove significantly more difficult.

III. EXPERIMENTAL RESULTS

In this section, the robustness of DK Lock against state-of-
the-art attacks is demonstrated on the ISCAS ’89 [53] and ITC
’99 [54] sequential benchmarks. All attacks are run in Ubuntu
with 4GB of RAM. Please note that DK Lock is independent
of the benchmark structure and thus applies to any circuit.
Overall, four sets of benchmarks are created. The key size
of Set1 & Set3 is fixed at 10, and the key size of Set2 &
Set4 scales with the primary input size. The benchmarks are
also implemented on the Nexys A7-100T FPGA board for

TABLE III
SEQUENTIAL ATTACKS ON THE LOCKED BENCHMARKS WITH DK LOCK -

SET 1 & SET 3 (FIXED KEY SIZE OF 10)

Bench KC2 [52] RANE [50]
Time #Iter. Result Time Result

(s) (s)

s27 0.82 99 Wrong Key 0.38 Wrong Key
s298 2.26 95 Wrong Key 0.92 Wrong Key
s349 - 2 Attack Failed 1.95 Wrong Key
s444 4.38 94 Wrong Key 0.97 Wrong Key
s510 140.04 96 Wrong Key 0.98 Wrong Key
s641 0.11 4 Wrong Key 2.39 Wrong Key
s713 133.03 96 Wrong Key 2.51 Wrong Key
s832 0.15 5 Wrong Key 1.22 Attack Failed
s953 - 1 Attack Failed 3.00 Wrong Key
s1196 0.13 2 Wrong Key 3.39 Wrong Key
s1488 - 2 Attack Failed 3.59 Wrong Key
s5378 - 2 Attack Failed 11.77 Wrong Key
s9234 2.81 6 Wrong Key 2.09 Attack Failed

s13207 485.63 98 Wrong Key 5.13 Attack Failed
s15850 637.85 98 Wrong Key 5.01 Attack Failed

b01 0.50 48 Wrong Key 0.79 Wrong Key
b02 0.39 50 Wrong Key 0.75 Wrong Key
b03 1.06 49 Wrong Key 0.88 Wrong Key
b04 - 49 Attack Failed 1.65 Attack Failed
b06 - 48 Attack Failed 0.77 Wrong Key
b07 3.27 49 Wrong Key 1.19 Attack Failed
b08 - 49 Attack Failed 0.9 Wrong Key
b09 5.07 50 Wrong Key 0.86 Wrong Key
b10 - 49 Attack Failed 0.93 Wrong Key
b11 600 38 Wrong Key 1.51 Wrong Key
b12 - 49 Attack Failed 1.92 Wrong Key
b13 - 49 Attack Failed 0.57 Attack Failed
b14 600 5 Wrong Key 11.21 Attack Failed
b15 600 17 Wrong Key 13.27 Attack Failed
b17 600 14 Wrong Key 51 Attack Failed

area and power analysis. To implement the benchmarks on
the FPGA, we use the ABC tool [55] to convert .BENCH
files to .V files, followed by synthesis and implementation in
Xilinx Vivado 2016.4 webpack edition.

Both combinational and sequential attacks were run against
each benchmark to provide a wide array of results. The original
SAT attack [3], CycSAT [37], and Double-DIP [40] were
chosen for combinational attacks. For each locked benchmark,
a combinational version was created by replacing FFs with
scan inputs and outputs. Each FF input is replaced with a



(a) (b) (c)

Fig. 3. Overhead - ISCAS ’89 benchmarks (a) Power Consumption (Watts) (b) Number of LUTs (c) Number of FFs

(a) (b) (c)

Fig. 4. Overhead - ITC ’99 benchmarks (a) Power Consumption (Watts) (b) Number of LUTs (c) Number of FFs

primary output and each FF output is replaced with a primary
input. The sequential attacks we ran against our locked circuits
include KC2 [52] and RANE [50].

Table II shows the results of combinational attacks run on
locked benchmarks with DK Lock. As anticipated, none of the
existing attacks are able to find the correct key. The SAT-based
combinational attacks report “UNSAT” since there is no single
correct key that satisfies the equivalence of the locked circuit
and the activated IC. The only case where they can report the
correct key is when we use the same key for activation and
functional phases, which reduces DK Lock to a single global
key model. The key size has no effect on the strength of the
proposed locking method against combinational attacks, as the
single-key assumption is thwarted regardless of this factor.

Consider the way the SAT attack functions. Comparing the
locked circuit to an oracle, the attack assumes that there is a
single key that will make the functionality equivalent. As soon
as a different output pattern is detected for some input pattern,
the key is pruned. Since our lock requires two distinct keys,
there is no single correct key that will return the circuit to
normal functionality. This means that the locked circuit and
oracle will continue to have different outputs for the same
inputs until the circuit is unlocked. For this reason, the SAT
attack will prune the correct activation key and never get a
chance to consider the functional key.

Running the sequential attacks against DK Lock-protected
benchmarks yielded similar results. Neither RANE [50] nor
KC2 [52] were able to report correct keys for any of the locked
benchmarks. Table III shows the results of both sequential
attacks run against Set1 and Set3 benchmarks. Akin to the
combinational attacks, the single global key assumption held
true for the sequential attacks. KC2 reported only a single

incorrect key when it was able to run through all solver
iterations without preemptively terminating. RANE [50] was
able to detect the presence of two keys; when a key was
reported, it was split into two incorrectly sized wrong keys. As
seen in Table III, considerably high run times were reported for
KC2 [52] against benchmarks s510 and s15850. These further
prove the security and scalability of DK Lock to large circuit
sizes. Only a 10-bit key was used for all of these benchmarks,
while a slight area and power overhead was incurred. In several
smaller benchmarks, the iteration count of KC2 [52] reached
near its set limit of 100.

Some benchmarks run against KC2 [52] proved incompat-
ible with the attack for unknown reasons. In fact, multiple of
the benchmarks which we now have results for did not run
successfully at first. Take s13207 run against KC2 [52] for
example. The first run was instantly aborted without providing
any further information about why it failed. However, when the
same original benchmark was locked with a different correct
key set of the same size, the attack ran until the iteration limit
and returned an incorrect key. Another example of this came
from s27 locked with a 10 bit key and a 13 bit key. The
13-bit key version encountered an error during the run, but
the 10-bit key locked benchmark returned a wrong key after
reaching the iteration limit. This solidifies the validity of our
results and even suggests that certain conditions may make the
locked benchmark more secure against current attacks.

Several of the benchmarks run against RANE [50] also
seemed to give issues related to the attack framework itself. At
first, none of our locked benchmarks seemed to be compatible
with the attack. The reason for these problems was we
applied DK Lock to .BENCH benchmarks, while RANE is
compatible with only the .V file format. The RANE attack uses



a different .BENCH to .V conversion tool than we first used
to parse and rewrite our locked circuits. After determining this
as the initial source of error, the built-in converter was used
instead. This allowed the attack to report the results shown in
Table III. For all remaining benchmarks which still caused the
attack to report errors, these 10-bit key locked circuits were
recreated from scratch using our script. These new circuits
locked with different randomized keys were then converted
to .V format using the provided tool in RANE [50] and the
attack was re-run against them. The benchmark s13207 was
the only one which newly became compatible with the attack
after these measures were taken. While it is possible that
different versions of these problematic benchmarks with varied
key sizes could prove compatible, time constraints prevented
a full exploration into this. Regardless of the error status of
some cases, not a single correct key was reported by the attack
for any of the given benchmarks.

Fig. 3 and Fig. 4 show the power usage of the locked
benchmarks of each set compared with the original ones, as
well as the resource utilization (i.e., number of LUTs and
FFs) of the original and locked benchmarks implemented on
the Nexys A7-100T FPGA board. As can be seen, DK Lock
scales well in terms of overhead. For example, the power
consumption increase of s13207 is only 3% with 17% of more
LUTs and 11% of more FFs under a key size of 10 (Set1).
The power and resource utilization are obviously higher when
we use larger key sizes, but as the attack evaluation findings
verified, we can safely lock any circuit with a fixed key size
that is independent of the circuit size. For instance, there is
no point in locking s713 with a key size of 59 (Set2) to face
double power consumption and resource utilization while it
can gain the same security benefit with a much smaller key
size (Set1).

IV. CONCLUSION & FUTURE OUTLOOK

In this paper, we introduced the idea of multiple key
values being inserted into the fixed-size set of key inputs.
Formally, we proposed a dual key logic locking method named
DK Lock that structurally adds an activation phase in any
given sequential circuit which requires an activation key to
be applied for several cycles. After this activation phase is
completed, another key must be applied to the same set of
key inputs to move into normal operation. Experimental results
showed that DK Lock is secure against state-of-the-art attacks
[3], [37], [40], [50], [52] on logic locking schemes while
consuming reasonable power and area overheads.

DK Lock opens up a new avenue for sequential defenses
against IC piracy and overproduction. Our scheme introduces
a significant weakness of state-of-the-art combinational and
sequential attacks by voiding the single static global key
assumption. With multiple keys needed to unlock the circuit,
current attacks are stumped by their search for a single
correct key. As we predicted and as our experimental results
demonstrate, dynamic key inputs provide strong resistance
to attacks on both sequential and combinational benchmarks.

Based on these findings, multi-key schemes is a promising
direction for further research in sequential logic locking.

An expansion of dual key locking to include any number
of keys is a promising path for future works. This could
take shape in a multi-level activation phase which unlocks
different parts of the original circuit at each stage. Another
separate approach could consist of changing the correct final
key on several fixed-cycle periods. If implemented using a
structural approach, these designs may prove to add a high
level of protection without severely impacting area and power
overheads.

ACKNOWLEDGMENT

This work is supported by the National Science Foundation
under Award No. 2245247.

REFERENCES

[1] J. A. Roy, F. Koushanfar, and I. L. Markov, “Epic: Ending piracy of
integrated circuits,” In Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 1069-1074, 2008.

[2] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security Analysis
of Logic Obfuscation,” In Design Automation Conference (DAC), pp.
83–89, 2012.

[3] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of
logic encryption algorithms,” In International Symposium on Hardware
Oriented Security and Trust (HOST), pp. 137-143, 2015.

[4] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, “SARLock:
SAT attack resistant logic locking,” In International Symposium on
Hardware Oriented Security and Trust (HOST), pp. 236-241, 2016.

[5] Y. Xie and A. Srivastava, “Mitigating SAT attack on logic locking,” In
International Conference on Cryptographic Hardware and Embedded
Systems (CHES), pp. 127-146, 2016.

[6] Y. Shen, A. Rezaei, and H. Zhou, “A comparative investigation of
approximate attacks on logic encryptions,” In Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 271-276, 2018.

[7] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran, and O.
Sinanoglu, “Provably-secure logic locking: From theory to practice,” In
ACM SIGSAC Conference on Computer and Communications Security
(CCS), pp. 1601–1618, 2017.

[8] A. Rezaei, Y. Shen, and H. Zhou, “Rescuing logic encryption in post-
SAT era by locking & obfuscation,” In Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 13-18, 2020.

[9] H. Zhou, A. Rezaei, and Y. Shen, “Resolving the trilemma in logic
encryption,” In International Conference on Computer Aided Design
(ICCAD), pp. 1-8, 2019.

[10] A. Rezaei, Y. Shen, S. Kong, J. Gu and H. Zhou, “Cyclic locking
and memristor-based obfuscation against CycSAT and inside foundry
attacks,” In 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 85-90, 2018.

[11] A. Rezaei, Y. Li, Y. Shen, S. Kong, and H. Zhou, “CycSAT-unresolvable
cyclic logic encryption using unreachable states” In Asia and South
Pacific Design Automation Conference (ASP-DAC), pp. 358–363, 2019.

[12] A. Rezaei, J. Gu, and H. Zhou, “Hybrid memristor-CMOS obfuscation
against untrusted foundries,” In IEEE Computer Society Annual Sympo-
sium on VLSI (ISVLSI), pp. 535-540, 2019.

[13] X. Yang, P. Chen, H. Chiang, C. Lin, Y. Chen, and C. Wang,
“LOOPLock 2.0: An enhanced cyclic logic locking approach” In IEEE
Transactions on CAD of Integrated Circuits and Systems, vol. 41, no.
1, pp. 29–34, 2021.

[14] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “Full-
Lock: Hard distributions of SAT instances for obfuscating circuits using
fully configurable logic and routing blocks,” In Proceedings of Design
Automation Conference (DAC), pp. 1-6., 2019.

[15] K. Shamsi, M. Li, D. Z. Pan, and Y. Jin, “Cross-lock: Dense layout-level
interconnect locking using cross-bar architectures,” In Proceedings of the
on Great Lakes Symposium on VLSI (GLSVLSI), pp. 147– 152, 2018.



[16] B. Hu, J. Tian, M. Shihab, G. Reddy, W. Swartz, Y. Makris, B. C. Schae-
fer, and C. Sechen, “Functional obfuscation of hardware accelerators
through selective partial design extraction onto an embedded FPGA,” In
Great Lakes Symposium on VLSI (GLSVLSI), pp. 171–176, 2019.

[17] P. Mohan, O. Atli, J. Sweeney, O. Kibar, L. Pileggi, and K. Mai, “Hard-
ware redaction via designer-directed fine-grained eFPGA insertion,” In
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1186–1191, 2021.

[18] J. Bhandari, A. Moosa, B. Tan, C. Pilato, G. Gore, X. Tang, S. Temple,
P. Gaillardon, and R. Karri, “Exploring eFPGA-based redaction for IP
protection,” In International Conference On Computer Aided Design
(ICCAD), pp. 1–9, 2021.

[19] Z. U. Abideen, T. D. Perez and S. Pagliarini, “From FPGAs to
obfuscated eASICs: Design and security trade-offs,” In Asian Hardware
Oriented Security and Trust Symposium (AsianHOST), pp. 1-4, 2021

[20] R. Karmakar, H. Kumar, and S. Chattopadhyay, “Efficient key-gate
placement and dynamic scan obfuscation towards robust logic encryp-
tion,” In IEEE Transactions on Emerging Topics in Computing, vol. 9,
no. 4, pp. 2109-2124, 2019.

[21] U. Guin, Z. Zhou, and A. Singh, “Robust design-for-security architecture
for enabling trust in IC manufacturing and test,” In IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 5, pp.
818–830, 2018.

[22] G. Zhang, B. Li, B. Yu, D. Z. Pan, and U. Schlichtmann, “Timing
camouflage: Improving circuit security against counterfeiting by uncon-
ventional timing,” In Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 91–96, 2018.

[23] Y. Xie and A. Srivastava, “Delay locking: Security enhancement of logic
locking against IC counterfeiting,” In Design Automation Conference
(DAC), pp. 1–9, 2017.

[24] J. Sweeney, V. Zackriya, V S. Pagliarini, and L. Pileggi, “Latch-based
logic locking,” In IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pp. 132–141, 2020.

[25] A. Rezaei, A. Hedayatipour, H. Sayadi, M. Aliasgari, and H. Zhou,
“Global attack and remedy on IC-specific logic encryption,” In IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), pp. 145-148, 2022.

[26] D. Sisejkovic, F. Merchant, L. M. Reimann, and R. Leupers, “Deceptive
logic locking for hardware integrity protection against machine learning
attacks” In IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 41, no. 6, pp. 1716-1729, 2022.

[27] R. Muttaki, R. Mohammadivojdan, M. Tehranipoor, and F. Farahmandi,
“HLock: Locking IPs at the high-level language,” In Design Automation
Conference (DAC), pp. 79–84, 2021.

[28] H. Zhou, Y. Shen, and A. Rezaei, “Vulnerability and remedy of stripped
function logic locking,” In Cyptology ePrint Archive, report 2019/139,
2019.

[29] N. Limaye, A. Chowdhury, C. Pilato, M. Nabeel, O. Sinanoglu, S. Garg,
and R. Karri, “Fortifying RTL locking against oracle-Less (untrusted
foundry) and oracle-guided attacks,” In Design Automation Conference
(DAC), pp. 91–96, 2021.

[30] J. Slowik, G. Williams, R. Albashir, A. Samagio, G. S. Nicholas and
F. Saqib, “Dynamic key updates for LUT locked design,” In IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), pp. 105-108, 2022.

[31] R. Afsharmazayejani, H. Sayadi, and A. Rezaei, “Distributed logic
encryption: Essential security requirements and low-overhead implemen-
tation,” In Proceedings of Great Lakes Symposium on VLSI (GLSVLSI),
pp. 127-131, 2022.

[32] R. Chakraborty and S. Bhunia, “HARPOON: An obfuscation-based SoC
design methodology for hardware protection.” In IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no.
10, pp. 1493-1502, 2009.

[33] Y. M. Alkabani and F. Koushanfar, “Active hardware metering for intel-
lectual property protection and security” In USENIX Security Symposium
on USENIX Security Symposium, article 20, pp. 1–16, 2007.

[34] L. Li and A. Orailoglu, “JANUS-HD: Exploiting FSM sequentiality and
synthesis flexibility in logic obfuscation to thwart SAT attack while
offering strong corruption,” In Design, Automation & Test in Europe
Conf. (DATE), pp. 1–6, 2022.

[35] Y. Kasarabada, V. Muralidharan, and R. Vemuri, “SLED: Sequential
logic encryption using dynamic keys,” In International Midwest Sympo-
sium on Circuits and Systems (MWSCAS), pp. 844-847, 2020.

[36] A. Rezaei and H. Zhou, “Sequential logic encryption against model
checking attack,” In Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 1178-1181, 2021.

[37] H. Zhou, R. Jiang, and S. Kong, “CycSAT: SAT-based attack on
cyclic logic encryptions,” In IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 49–56, 2017.

[38] N. Limaye, S. Patnaik, and O. Sinanoglu, “Fa-SAT: Fault-aided SAT-
based attack on compound logic locking techniques,” In Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), pp. 1166-
1171, 2021.

[39] Y. Shen, Y. Li, S. Kong, A. Rezaei, and H. Zhou, “SigAttack: New high-
level SAT-based attack on logic encryptions,” In Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 940-943, 2019.

[40] Y. Shen and H. Zhou, “Double DIP: Re-evaluating security of logic
encryption algorithms,” In Great Lakes Symposium on VLSI (GLSVLSI),
pp. 179-184, 2017.

[41] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal
attacks on logic locking and camouflaging techniques,” In IEEE Trans-
actions on Emerging Topics in Computing, vol. 8, no. 2, pp. 517-532,
2020.

[42] Y. Shen, A. Rezaei, and H. Zhou, “SAT-based bit-flipping attack on
logic encryptions,” In Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 629-632, 2018.

[43] D. Sirone and P. Subramanyan, “Functional analysis attacks on logic
locking,” In IEEE Transactions on Information Forensics and Security,
vol. 15, pp. 2514-2527, 2020.

[44] M. E. Massad, S. Garg, and M. Tripunitara, “Reverse engineering
camouflaged sequential circuits without scan access,” In IEEE/ACM
International Conference On Computer Aided Design (ICCAD), pp.
33–40, 2017.

[45] Y. Kasarabada, S. Chen, and R. Vemuri, “On SAT-based attacks on
encrypted sequential logic circuits,” In International Symposium on
Quality Electronic Design (ISQED), pp. 204-211, 2019.

[46] N. Limaye, S. Patnaik, and O. Sinanoglu, “Valkyrie: Vulnerability
assessment tool and attack for provably-secure logic locking techniques,”
In IEEE Transactions on Information Forensics and Security, vol. 17,
pp. 744-759, 2022.

[47] A. Saha and U. Chatterjee and D. Mukhopadhyay and R. S. Chakraborty,
“DIP Learning on CAS-Lock: Using Distinguishing Input Patterns for
Attacking Logic Locking” In Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 688-693, 2022.

[48] Y. Shen, Y. Li, A. Rezaei, S. Kong, D. Dlott and H. Zhou, “BeSAT:
Behavioral SAT-based attack on cyclic logic encryption,” In Asia and
South Pacific Design Automation Conference (ASP-DAC), pp 657-662,
2019.

[49] A. Rezaei, R. Afsharmazayejani, and J. Maynard, “Evaluating the
security of eFPGA-based redaction algorithms,” In Proceedings of
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), article 157, pp 1-7, 2022.

[50] S. Roshanisefat, H. M. Kamali, H. Homayoun, and A. Sasan, “RANE:
An open-source formal de-obfuscation attack for reverse engineering
of logic encrypted circuits,” In Great Lakes Symposium on VLSI
(GLSVLSI), pp. 221–228, 2021.

[51] C. Karfa, R. Chouksey, C. Pilato, S. Garg, and R. Karri, “Is register
transfer level locking secure?” In Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 550–555, 2020.

[52] K. Shamsi, M. Li, D. Z. Pan and Y. Jin, “KC2: Key-condition crunching
for fast sequential circuit deobfuscation” In Design, Automation & Test
in Europe Conference & Exhibition (DATE), pp. 534-539, 2019.

[53] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” In IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1929-1934, 1989.

[54] S. Davidson, “ITC’99 Benchmark Circuits - Preliminary Results,” In
International Test Conference (ITC), pp. 1125-1125, 1999.

[55] Berkeley Logic Synthesis and Verification Group, “ABC:
A system for sequential synthesis and verification,”
http://www.eecs.berkeley.edu/˜alanmi/abc/


