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ABSTRACT Chaos-based encryption is a promising approach to secure communication due to its complexity
and unpredictability. However, various challenges lie in the design and implementation of efficient,
low-power, attack-resistant chaos-based encryption schemes with high encryption and decryption rates.
In addition, Machine learning (ML) has emerged as a promising tool for enhancing the growing security
and efficiency concerns and maximizing the potential of emerging computing platforms across diverse
domains. With the rapid advancements in technology and the increasing complexity of computing systems,
ML offers a unique approach to addressing security challenges and optimizing performance. This paper
presents a comprehensive study on the application of ML techniques to secure chaotic communication
for wearable devices, with an emphasis on chaos-based encryption. The theoretical foundations of ML for
secure chaotic communication are discussed, including the use of ML algorithms for signal synchronization,
noise reduction, and encryption. Various ML algorithms, such as deep neural networks, support vector
machines, decision trees, and ensemble learning methods, are explored for designing chaos-based encryption
algorithms. This paper places a greater emphasis on methodological aspects, metrics, and performance
evaluation ofmachine learning algorithms. In addition, the paper presents an in-depth investigation into state-
of-the-art ML-assisted defense and attacks on chaos-based encryption schemes, covering their theoretical
foundations and practical implementations. Furthermore, a review of the potential advantages and limitations
associated with the utilization of ML techniques in secure communication systems and encryption is
provided. The study extends to exploring the diverse range of applications that can benefit fromML-assisted
encryption, such as secure communication in the Internet of Things (IoTs), cloud computing, and wireless
networks. Overall, we provide insights into the applications of ML for secure chaotic communication
in wearable devices, its challenges, and opportunities, offering a foundation for further research and
development and facilitating advancements in the field of secure chaotic communication.

INDEX TERMS Quantum computing, quantum-safe, chaos, chaotic map, encryption, side channel attacks,
machine learning, artificial intelligence, hardware security.

I. INTRODUCTION
The amount of data created over the next three years
will be greater than the data created in the past 30 years
combined [1]. According to a study by the International Data
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Corporation (IDC), the global datasphere, which includes all
the data created, captured, and replicated, is expected to grow
from 33 ZettaBytes (ZB) in 2018 to 175 ZB by 2025 (Fig. 1).
This represents a CompoundAnnual Growth Rate (CAGR) of
61%. The growth in data is being driven by the data generated
from IoT sensors, wearable devices [2], [3], and medical
data records. Moreover, financial institutions [4] can store
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FIGURE 1. Global data growth trajectory from 2010 to 2025 - This figure
illustrates the escalation in global data generation and the corresponding
data storage capacity over fifteen years.

mission-critical data for several years or even indefinitely,
to comply with anti-money laundering regulations [5] and to
facilitate customer service and support as mandated by the
Securities and Exchange Commission (SEC) in the United
States.

Today, a vast amount of data is generated by the healthcare
sector, accounting for approximately 30% of the global data
volume, which provides invaluable insights and opportunities
for advancements in patient care and medical research [6].
With a projected CAGR of 36% for health data by 2025,
harnessing and effectively utilizing this data becomes even
more crucial for driving evidence-based decision-making,
personalizing treatments, and improving health outcomes
[7]. With wearable devices finding their way into our
healthcare system, it is specifically important to secure
high-risk sensitive healthcare wearable systems including
implantable pacemakers, biofluidic-based wearables, and
skin-based wearables; considering the corner cases where an
attacker can access the data and manipulate it to cause life-
threatening situations.

Cryptographic methods [8] for security in today’s world
are generally composed of two categories of symmetric and
asymmetric solutions. Numerous algorithms are developed
for asymmetric encryption, such as Rivest-Shamir-Adleman
(RSA), the Digital Signature Algorithm (DSA), and Elliptic
Curve Cryptography (ECC). The security of RSA and ECC
relies on the difficulty of integer factorization and discrete
logarithm problems. Symmetric algorithms can be classified
into two main types: block algorithms and stream algorithms.
Block algorithms encrypt data block by block, which can lead
to potential security gaps due to the wait time for complete
blocks. Stream algorithms, on the other hand, encrypt data
byte by byte or even bit by bit, providing increased security
as data is not retained in the system’s memory without
encryption. Examples of encryption algorithms include
Data Encryption Standard (DES), Triple DES, Advanced
Encryption Standard (AES), RC2, and Blowfish. Hash-
based, digital signature, DeoxyriboNucleic Acid (DNA)-
based cryptography [9], and quantum cryptography [10] also
play a vital role in ensuring secure communication and data
protection in various applications and systems. However, with

the advent of quantum computers, RSA and ECC solutions
will not be secure [11]. This poses a serious concern, as these
algorithms are the most commonly used algorithms for
secure key exchange. On a theoretical level, Shor’s factoring
algorithm [12] can solve the problems in polynomial time,
and this heads toward a new area of cryptography, i.e., Post-
Quantum Cryptography (PQC) [13] that aims to develop
new algorithms and techniques that can resist attacks from
quantum computers.

National Institute of Standards and Technology (NIST),
an organization that promotes the U.S. economy and public
welfare by providing technical leadership for the nation’s
measurement and standards infrastructure [14] is following
steps to initiate a standardization effort in PQC. The industry
is already transitioning to the PQC era [15] from a proactive
approach to security. The CRYSTALS-Kyber [16] is a
quantum-safe algorithm developed by IBMResearch that was
also selected by NIST as one common encryption algorithm
to access secure websites.

In recent years, researchers have been exploring the use
of chaotic maps in cryptography, particularly in the context
of PQC. One approach that has been proposed is to use
Chebyshev polynomials [17], which are based on a chaotic
map, for encryption. However, this approach was quickly
broken in the first round of the NIST PQC and it was
withdrawn from the competition. This raises the question of
whether the attack was inherent to Chebyshev polynomials
or whether the specific cryptosystem used in the competition
was poorly chosen. To address this issue, researchers have
been exploring other options for using chaotic maps in
cryptography. One promising approach is to use a Lorenz
chaotic map [18] for secret-key exchange. This approach
has been shown to be effective in a hash algorithm for a
stream cipher that is designed for the PQC era. By leveraging
the chaotic behavior of the Lorenz map and other chaotic
equations, it is possible to create a secure and robust
encryption scheme that is resistant to attacks from quantum
computers.

An alternate approach to using chaos-based techniques for
designing cryptosystems can be implemented by creating a
hyper-chaotic circuit and carefully choosing the components
that will increase the key space for encryption. Once such
an approach is demonstrated in [19] which uses memristive
components as tunable keys and also implements the concept
of logic locking [20] for enhanced security. However, the
main challenge even after designing the encryption algorithm
is retrieving the information at the destination (decryption),
as during chaotic encryption, the original signal is mixed with
the chaotic system. Synchronization between the encryptor
and decryptor is a key component of a chaotic cryptosystem.
To solve this issue, Machine Learning (ML) approaches can
be used to synchronize the output signal.

In this paper, we first look at the methods of chaotic
map-based cryptosystems as a hardware implementation and
at the application of ML approaches to the synchronization
of the output signal. We also review ML as a tool to attack
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chaotic systems. The paper is organized as follows: We pro-
vide a detailed background on chaotic maps in Section II and
in Section III we discuss the ability of ML, and specifically
reservoir computing, to predict chaotic behavior. Further,
in Section IV an ML approach to synchronizing the signals
is implemented using different clustering and categorizing
algorithms. We then evaluate the various ML-based attacks
on the chaotic encryption systems in Section V. Finally,
in Section VI we provide the overall discussion, followed by
the conclusion in Section VII.

II. THE HISTORY OF CHAOS
In 1963, Lorentz presented the first well-known chaotic
system. This marked the start of chaos theory, a branch of
nonlinear system theory that has been studied intensively
in recent years. Chaos can be applied to signals in two
main ways (i.e., discrete-time vs. continuous-time chaotic
systems), with distinct advantages and challenges in terms of
encryption strength and security considerations.

A. DISCRETE-TIME CHAOS
Discrete-time chaotic systems are mathematically described
with nonlinear functions where the output is an iterated
function of the input. The general form of discrete-time
chaotic systems can be expressed as follows:

xn+1 = f (C, xn) (1)

As shown in Eq. (1), the next state of the system, xn+1 is a
function of the present state, xn, and the control parameter, C .
This nonlinear function is called a chaotic map. Depending on
the number of state variables, chaotic maps are of two kinds:
(i) One-dimensional maps, where only one deterministic
equation is involved to describe the evolution of a single state
variable. Examples of this kind are sine maps [29], tent maps
[30], and logistic maps [31]. (ii) Multi-dimensional chaotic
maps, that involve more than one deterministic equation to
define the evolution of multiple state variables. Hénon map
[32] falls into this second category. The simple mathematical
expression of chaotic maps can be suitable for applications
like FPGA-based image encryption [33]. However, it is
reported that the CMOS-based compact implementation of
classic chaotic maps becomes highly hardware-hungry. As a
solution to this issue, researchers have been exploring how
to leverage the built-in non-linearity in transistors to design
simple, hardware-effective discrete maps with meaningful
chaotic properties [34], [35], [36].
In recent years various new chaotic equations have been

developed. A novel two-dimensional parametric polynomial
chaotic system (2D-PPCS) was developed for various
engineering applications like secure communication, image
and data encryption, biological and physiological modeling,
and many more [37]. Unlike existing chaotic systems with
various limitations, the 2D-PPCS offers benefits such as
continuous chaotic parameter ranges, robust chaos, and
reduced occurrence of chaos degradation. This was achieved

by utilizing modular quantification applied to two paramet-
ric polynomials, allowing for customization of Lyapunov
exponents and desired complexity [38]. The study provided
theoretical analysis and presented two examples, supported
by numerical experiments, demonstrating the robust chaotic
behavior of the 2D-PPCS [39]. As an application of this
chaotic system, a pseudorandom number generator was
developed to showcase practical applications, exhibiting
superior performance compared to representative 2-D chaotic
maps in generating higher randomness pseudorandom num-
bers [40].

Our primary focus lies in continuous-time signals,
as our objective is to encrypt and transmit signals from
resource-constrained devices and systems, all while avoiding
the use of energy-intensive components and data conversion
processes.

B. CONTINUOUS-TIME CHAOS
Continuous-time chaos generators are dynamic systems
described by nonlinear differential equations, which encom-
pass both Ordinary Differential Equations (ODEs) and
Delay-Differential Equations (DDEs). The inherent instabil-
ity within these chaotic dynamical systems leads to long-term
unpredictability and positive entropy. To achieve desirable
characteristics such as multiple equilibrium points and
attractive regions, various equations incorporating nonlinear
components are employed, including polynomial forms, sinu-
soidal, delay-based, and PieceWise-Linear (PWL) functions.

One of the most renowned examples of a chaotic system is
the Lorenz attractor [21], [22], [23], known for its intricate
and butterfly-like pattern. However, the original equations
suffered from the complexity introduced by two multipliers,
posing implementation challenges [24]. To address this
drawback, a modified Lorenz system [25], [26] was intro-
duced, represented by three differential equations without
multipliers. This modified system successfully captures the
essential behavior of the Lorenz attractor, including the
generation of the butterfly effect, as well as modified and
unsymmetrical Lorenz systems. Additionally, researchers
have proposed various other variations of the Lorenz system,
such as the four-dimensional Lorenz-Stenflo system [27],
[28] with four parameters, aimed at improving stability and
unpredictability. Table 1 summarizes continuous-time chaos
approaches with the equations that can produce continuous
chaos, along with their implementation based on scroll type
and function. As seen in this table, Chaos can be implemented
using various equations, with the common thread being
the incorporation of a crucial nonlinear element featuring
multiple equilibrium points. This fundamental characteristic
underpins the intriguing nature of chaotic systems where,
despite their inherent unpredictability, they remain confined
within what are known as ‘‘attractive regions.’’ Among
the nonlinear elements that facilitate chaos are integra-
tors, sinusoidal waveform generators, delay-based systems,
and polynomial forms, as well as the notable inclusion
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TABLE 1. Continuous-time chaotic communication approaches. These equations can be categorized based on their scroll type and function.

of piecewise-linear (PWL) functions. PWL functions, are
especially adept at generating chaos due to their use of
linear segments with abrupt transitions, thereby yielding
complex behavior contingent upon their specific piecewise-
linear structure. The realm of chaotic systems however
extends beyond just PWL functions. Various other nonlinear
systems and equations, such as the Rössler attractor, the
Chua circuit, and the Duffing oscillator, further exemplify the
diversity of chaotic behavior stemming from different forms
of nonlinearity. In all these cases, the presence of nonlinear
elements and equations featuring multiple equilibrium points
can be the catalyst for chaotic dynamics. Notably, chaos
is often marked by its sensitive dependence on initial
conditions, where even slight alterations in the system’s
starting state can lead to vastly divergent trajectories over
time. A comparative analysis of these methods has been done
in our previous work [41].
A secure communication scheme for chaotic modulation

based on the synchronization of the Lorenz system is
proposed by Zapatorio et al. [42]. In this secure com-
munication, the intensity limit, stability of the transmitted
signal, characteristics of broadband, and requirements for
the accuracy of electronic components have been pre-
sented by simulation and experiments. Following this work,
Xiong et al. [43] proposed some improvements to the
measurementmethod and the experimental circuit to facilitate
the synchronization, with and without the signal. The
possibility of synchronizing coupled analog and digital
systems was experimentally proven. The digital model
obtained with a semi-implicit numerical integration method
gives fast and stable computer simulation. There are three
different cases of synchronization: analog-to-analog, digital-
to-analog, and analog-to-digital. El-Maksoud et al. [44]
demonstrated that chaotic systems with chaotic dynamics
have different communication, security, and computation
applications consisting of high-speed and low-cost hardware
for three-dimensional chaotic flowswithout equilibrium. As a
proof of concept, they implemented their solution in hardware
with low computational overhead on an FPGA board.

Various other chaotic attractors are also illustrated by
FPGAs. Bonny et al. [45] proposed implementing chaotic
attractors as True Random Bit Generators (TRBGs) on

FPGA’s. The high-speed TRBGs realized on a modular
FPGA hardware platform use two switching-type chaotic
oscillators. For that purpose, two different implementations
are described for each TRBG: a throughput-optimized archi-
tecture and a resource-optimized architecture that utilizes
fewer FPGA blocks. Wang et al. [46] investigated different
modes of implementation, comparing the advantages and
disadvantages of higher-dimensional chaotic oscillators on
the throughput, hardware requirements, and security of
the generated bitstreams. This investigation reveals that a
real-time encryption process in analog circuitry can be
achieved using off-the-shelf components.

For a range of applications, including e-government,
e-identity cards, e-passports, e-visas, e-commerce, and public
and private keys, chaos systems are used to produce
random numbers. Bonny et al. [47] have proposed a com-
plete hardware/software comparison and security analysis
of three-dimensional chaotic and four-dimensional hyper-
chaotic oscillator systems. Hyper-chaotic systems can exhibit
a higher level of complexity in comparison with chaotic sys-
tems. The experimental results showed that the hyper-chaotic
oscillator has a higher level of security than the chaotic one,
but it is slower and utilizes more FPGA resources. This
work explores the features of each oscillator system, such
as throughput, FPGA resource utilization, operating clock
frequency, and security of the generated bitstreams, to show
a compromise solution for these features.

A comparative linearization of the chaos system is a
promising direction for investigation. Linear circuits are use-
ful as they can amplify and process electrical signals without
introducing any distortion. A system is considered non-linear
if the equation defining it comprises square or higher-order
input/output components, products of input/output and their
derivatives, or constants. Chua’s equation is considered to
have more linear elements and a chaos generator known as
Chua’s chaotic system, with many multi-scroll chaotic oscil-
lators derived from the double-scroll Chua’s equation [41].
In contrast to typical oscillators, an oscillator with infinite
equilibria solely contains nonlinear components (quadratic,
absolute, and cubic). The oscillator’s unique qualities make
it appropriate for security applications. Simulations and
an electronic circuit have been used to learn more about
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the oscillator’s behavior. Lyapunov exponents, bifurcation
diagrams, chaotic attractors, and the boosting feature are
discussed [48].

As no external signal interferes with the system, Chua’s cir-
cuit is autonomous, which means the chaotic state variables
in an autonomous system can be synchronized [49]. A typical
autonomous Chua’s circuit, which has been reported as
the equation with the least amount of hardware required,
consists of three main components: resistors, capacitors, and
inductors, and these components need to contain at least
one nonlinear element, one locally active resistor, and three
energy-storage elements. Real-world insight into controlling
chaotic phenomena is beneficial in many fields, including
secure communication, the medical field, and fractal theory,
which encourages the implementation of these devices on-
chip. However, the design of chaotic oscillators is challenging
due to their sensitivity and fabrication variations, which
may cause the mathematical model to suppress chaotic
behavior.

Recent years have witnessed a significant advancement in
biomedical applications of chaotic systems, specifically in
image encryption. Although image encryption does not fit
the focus of this paper, below are some examples of modern
multi-dimensional chaos. A novel, lightweight approach to
image encryption was devised for Medical Internet of Things
(MIoT) networks, incorporating compressive sensing and a
modified seven-dimensional (MSD) hyperchaotic map [50].
The 7D hyperchaotic map underwent initial modification to
generate highly secure and intricate secret keys. Leveraging
the NonSubsampled Contourlet Transform (NSCT), further
improvements were made in compressive sensing, and
measurement matrices were derived using the secret keys
generated byMSD. The encryption process entailed applying
diffusion and permutation techniques to compressed images
using the secret keys obtained from MSD. Comprehensive
analyses substantiated the approach’s resilience, security,
and statistical effectiveness. A separate study introduced a
swift image encryption algorithm based on an enhanced 6-D
chaotic system, entailing the design of a hyper-chaotic system
with heightened chaotic behavior [51], [52]. This algorithm
showcased exceptional security prowess, robustness, and
rapid encryption and decryption speeds. An asymmetric
image encryption method based on elliptic curve ElGamal
cryptography and chaotic theory was introduced to address
concerns regarding keymanagement in symmetric encryption
schemes [53], [54]. This method exhibited elevated security,
efficiency, and resistance against attacks [55]. An investiga-
tion was conducted to evaluate the efficiency of chaotic-based
image block ciphering in spatial and Fractional Fourier
Transform (FrFT) domains. Various chaotic maps were
scrutinized, considering FrFT parameters as supplementary
encryption keys. The outcomes demonstrated the efficacy
of chaotic-based image encryption in the FrFT domain,
with the Cat-FrFT scheme demonstrating superior resistance
against channel noise attacks [56]. Utilizing 3D adversarial
attacks within chaotic systems introduces a new dimension

FIGURE 2. The three-layer structure of a reservoir computing system,
showing the flow from input signal u(n) through the dynamic reservoir
xi (n) to the linear output y (n) , encapsulating the core process of
information transformation [61].

of security challenges. These attacks strategically exploit the
complex behavior of chaotic systems, aiming to manipulate
their trajectories and disrupt their intended functionality.
By targeting the vulnerabilities inherent in chaotic dynamics,
adversaries can potentially compromise the integrity and
reliability of critical applications, highlighting the need for
robust defenses in this evolving landscape of cybersecurity
[57], [58].

Further, as with any other hardware block being fabricated,
various hardware security concerns also arise when designing
chaotic encrypters [56]. Therefore, many different methods
were researched to encrypt the chaotic system, use fractional
differential equations to overcome interfering environmental
factors such as temperature and voltage change, and improve
the synchronization of the signals in chaotic communication.
Here we exploreML as a tool to improve the chaotic behavior
and synchronization of the chaotic system on the chip and
also look into ML-based attacks on chaotic communication
systems.

III. MACHINE LEARNING FOR CHAOS PREDICTION
Numerous papers have been published that delve into the
realm of chaotic and analog encryption systems. However,
the fact that none of these works really address the critical
issue of security or provide an estimate of the computational
efforts necessary to break these systems raises a notable
concern. The prevailing assumption in most of these papers
is that the system’s security is primarily derived from the
obscurity of the encryption method itself. As a result,
it is commonly believed that cryptanalysts would find it
exceedingly challenging to launch an attack based solely
on knowledge of the ciphertext [59]. Nonetheless, the
lack of comprehensive security analyses and computational
assessments poses potential vulnerabilities in the practical
implementation of these encryption techniques. In recent
years, reservoir computing has been introduced as a method
to predict the numbers that will be generated by the original
system τ seconds in advance (Table. 2) [60].
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TABLE 2. Comparison table for chaos prediction using machine learning.

Fan et al. [61] introduced the use of reservoir computing
for predicting the evolution of chaotic dynamical systems
without relying on a model, as shown in Fig. 2. The
proposed scheme incorporates infrequent updates of the
actual state of the target system, allowing for an arbitrarily
long prediction horizon for a variety of chaotic systems.
The robustness of the proposed approach is based on the
theory of temporal synchronization. The reservoir system
can correct its trajectory and accurately predict the evolution
of the target system, even over a long prediction horizon,

through a physical understanding of synchronization. When
the trajectories of the reservoir and original systems diverge,
the reservoir system can be correctedwith a real measurement
as small as a single data point. This synchronization enables
the reservoir system to reset the prediction horizon and
continue to predict accurately. While the proposed scheme
demonstrates robustness in predicting the state evolution of
chaotic systems, it has some limitations due to the exponential
divergence between the trajectories of the reservoir and true
systems, which restricts the prediction horizon achieved.

Pathak et al. [62] introduced a hybrid forecasting scheme
that combines a knowledge-based model with reservoir
computing. By leveraging the advantages of both approaches,
the hybrid technique consistently outperforms individual
components, showcasing improved performance and mak-
ing predictions at smaller reservoir sizes, thus saving
computational resources. Moreover, even in cases where
the knowledge-based model exhibits flaws, the hybrid
approach still produces accurate predictions, demonstrating
its robustness. Furthermore, both the hybrid scheme and the
reservoir-only model exhibit training reusability, enabling
multiple subsequent predictions without the need for retrain-
ing. This approach holds significant potential in various
applications, including weather forecasting and chaos system
synchronization.

ML approaches have also been applied to predict phase
coherence in chaotic systems. Zhang et al. [63] utilized reser-
voir computing to sense phase coherence between coupled
chaotic oscillators. Results revealed that an integrated input
scheme can discern different degrees of phase coherence,
whereas an independent input scheme fails to sense phase
coherence. This finding holds implications for predicting
large chaotic systems using parallel reservoirs.

Borra et al. [64] address the challenge of understanding
and modeling dynamics in multiscale systems by employing
reservoir computing to build data-driven effective models.
The study demonstrates that predictability can be improved
by hybridizing the reservoir with an imperfect model,
allowing accurate predictions even with smaller reservoirs.
The potential of this approach extends to more complex,
high-dimensional, multiscale systems through the use of
multi-reservoir architectures in parallel.

Weng et al. [65] explore the use of reservoir computing
for synchronizing chaotic systems and their ML models.
By employing an ML technique with reservoir computing,
synchronization can be achieved among chaotic systems and
their fitted reservoir computers using just one observational
measure.

In a different study, Pathak et al. [66] presented an
ML model for chaotic dynamical systems using reservoir
computing to estimate Lyapunov exponents from data. The
technique successfully approximated the ergodic properties
of the true system and accurately calculated positive and zero
Lyapunov exponents. However, calculating the numerical
value of the negative Lyapunov exponent remains challenging
due to its high magnitude.
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Weng et al. [67] re-examined the reservoir computing
approach for modeling chaotic systems. This ML method
provides a viable alternative to conventional dynamical
equations when analytical models are inaccessible. The study
demonstrated that the temporal and spatial scales of trained
reservoir systems mirror those of observed chaotic systems,
and successful dual synchronization can be achieved between
a chaotic system and its learned reservoir system.

In conclusion, the integration of ML and knowledge-based
models has shown great promise for forecasting and
understanding chaotic dynamical systems. These approaches
offer innovative solutions, enabling accurate predictions,
synchronizations, and modeling even in the absence of
complete mechanistic knowledge. The combination of these
techniques holds significant potential for advancing chaos
system synchronization and forecasting in various fields of
science and engineering.

IV. MACHINE LEARNING FOR CHAOS
SYNCHRONIZATION
Chaotic signal encryption finds applications in secure
communication, data privacy, image and video encryption,
biometric security, secure control systems, financial trans-
actions, and IoT security. To focus on a specific example,
here we look into the utilization of chaotic signal encryption
to enhance the security of communication systems, such
as wireless networks, satellite communication, and internet-
based communication. By exploiting the complex and unpre-
dictable nature of chaotic signals, encryption algorithms
based on chaos theory can provide robust protection against
eavesdropping and unauthorized access.

In the various communication system implementations
reviewed in Section II, a similar circuit serves as both the
transmitter and receiver. Here we use Chua’s system as an
example to show the signal synchronization. The message to
be transmitted is encrypted in the transmitter and sent through
a public channel visible to unauthorized users. At the receiver,
chaotic synchronization is used to decrypt the message.
The decrypted message still requires further processing to
reconstruct the original message.

A. TRADITIONAL METHODS FOR SIGNAL
SYNCHRONIZATION
In the system shown in Fig. 3, the original message is
represented by the signal ‘‘Message’’ and its encrypted
version before being transmitted through the public channel
as ‘‘Encrypted’’. The goal is to ensure that no data can be
extracted from the encrypted message, as it should exhibit
no correlation with the original message. The data that is
decoded by the receiver is represented by ‘‘Decrypted’’,
which, although not a perfect 0 and 1 representation,
is correlated with the original message. The accuracy of the
reconstruction is evaluated by calculating the accumulated
number of false positives and false negatives divided by
the total number of data points. Although the original and
the decrypted messages do have a correlation, the accuracy

FIGURE 3. Visualization of chaotic encryption for secure communication -
The top plot presents the original binary message signal. The middle plot
displays the message after chaotic encryption, signifying transmission
over a public channel. The bottom plot shows the signal post chaotic
decryption, illustrating the restoration of the original message at the
receiver’s end. The temporal axis is marked in seconds, providing a clear
depiction of the encryption-decryption dynamics over time.

does not exceed 80% when common classification methods
like threshold and averaging are used [68], which cannot be
trusted for data transfer specifically in biomedical devices.

Compared to traditional methods such as averaging,
moving average, and thresholding, machine learning emerges
as a superior tool for error correction and signal syn-
chronization. Chaotic signals often exhibit complex and
non-linear dynamics, making their synchronization a chal-
lenging task. Machine learning algorithms, especially deep
learning models, possess the capability to adapt and learn
intricate patterns from chaotic signal data, allowing them
to correct errors with a remarkable level of accuracy.
These models excel at capturing and deciphering chaotic
behavior, even in the presence of noise and unpredictability.
Unlike conventional methods that rely on fixed heuristics,
machine learning continuously refines its error correction
strategies as it encounters more data, making it a potent tool
for achieving precise synchronization in the chaotic signal
domain. This adaptability and ability to handle complex,
dynamic systems positions machine learning as an invaluable
asset in advancing the state-of-the-art in chaotic signal
synchronization research.

ML has become a popular asset for signal synchronization,
but its application in chaotic encryption is still a relatively
new field. There are various ML algorithms that offer the
potential for improved encryption security and the devel-
opment of practical decoders for error correction in digital
communication devices, addressing previous limitations and
achieving better frame error rates for various codes. Next,
we will explain the need for synchronization in chaotic
communication, explore the current research on signal
synchronization using ML, its limitations, and how chaotic
encryption with ML can overcome these limitations due to its
robustness. Furthermore, we will discuss the latest research
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FIGURE 4. Design used for data extraction using matlab simulink showing the transmitter block on the left and receiver block on the right. This
transmitter performs message encryption over a public channel using Chua’s chaotic system and the receiver decrypts the message using chaotic
synchornization.

on ML in chaotic encryption and how it has the potential to
revolutionize the field.

B. MACHINE LEARNING METHODS FOR
SIGNAL SYNCHRONIZATION
ML is widely used in signal synchronization. Popovici et al.
[69] proposed a novel clustering method for the evaluation
of signal data based on the similarity of their pattern, which
contains more information than the signal intensity and
dominant frequencies. Novel clustering method is a creative
technique to group data points into a cluster based on unique
algorithms or techniques that are usually not covered using
traditional clustering algorithms in machine learning and data
analysis. The signals are transformed into symbol strings,
and the edit distance is used to determine the similarity
between strings. Based on this similarity, the data streams are
clustered using a Self-Organizing Map (SOM)-type network
that adapts incrementally to the input sensor data stream.
The method is particularly useful for the inspection of signal
streams in the context of online monitoring and offline
analysis.

The proposed ML techniques for signal synchronization,
such as clustering and feature extraction, show great promise
in effectively analyzing and processing large and complex
datasets in real-time applications. Clustering is the process
of grouping similar data points together based on their
shared characteristics or proximity in a dataset. Feature
extraction is the process of selecting and transforming
relevant information from raw data to create a more
concise representation, facilitating effective analysis and
pattern recognition. There have been examples of these
methods handling complicated real-time data, like ECG [70]
and EEG [71], [72], where even slight errors can result
in severe consequences. Therefore, using ML in chaotic
synchronization could make the decrypted signal in the
receiver more robust and even more effective.

Support Vector Machine (SVM) is a powerful and versatile
supervised learning algorithm used for classification and
regression, with a focus on classification problems. SVMs
were introduced in the 1960s and refined in the 1990s,
and their unique implementation sets them apart from other
ML algorithms. Their popularity stems from their ability to
handle multiple continuous and categorical variables [73].
In SVM, a model represents different classes in a hyperplane
in multidimensional space. SVM iteratively generates a
hyperplane to minimize error and divides datasets into classes
to find the MaximumMarginal Hyperplane (MMH). Support
vectors are the closest data points to the hyperplane that help
define the separating line. The hyperplane is a decision plane
or space that separates a set of objects with different classes,
and its margin is calculated as the perpendicular distance
from the line to the support vectors. Here, a larger margin
is considered better than a smaller margin.

Weng et al. [65] chose to use chaotic synchronization
as a method for secure communication. They described a
new approach to synchronizing chaotic systems using ML,
specifically the reservoir computing technique, as discussed
in Section III. Reservoir computing is a machine learning
technique that uses a fixed, randomly generated ‘‘reservoir’’
of neurons to process temporal data, making it particularly
suitable for tasks involving sequential or time-series data.
This method allows for accurate prediction of chaotic systems
without prior knowledge of their equations. By transmitting
a single scalar signal, trained reservoir computers can
synchronize with learned chaotic systems, and cascading
synchronization can also be achieved. One of the limitations
of the method proposed in the paper is that it requires a
large number of parameters to be tuned in order to achieve
optimal synchronization. This can be time-consuming and
computationally expensive, especially for complex systems
with many degrees of freedom. Additionally, the method
assumes that the dynamics of the systems being synchronized
arewell-known,whichmay not always be the case in practical

125756 VOLUME 11, 2023



J. Hwang et al.: Machine Learning in Chaos-Based Encryption: Theory, Implementations, and Applications

applications. Finally, the methods based on linear feedback
control may not be sufficient for achieving synchronization
in systems with highly nonlinear dynamics. However, the
limitations of [61] and [65] can be resolved by adopting
different ML techniques.

Combining ML and chaotic synchronization techniques
could provide a more secure and efficient solution for
real-time signal synchronization and analysis, with potential
applications in healthcare, telecommunications, and other
fields where secure data transmission is critical.

C. DATA PREPARATION
The initial phase of our study involved meticulous data
preparation to ensure the quality and appropriateness of the
dataset for our experiments. Key steps included:

Data Acquisition: Using the system setup in Fig.4,
we obtained a dataset consisting of 2,743 samples. The
dataset was exported from a CSV file, and the columns of
primary interest were ‘Reference,’ ’Time,’ and ‘Out Sync.’

Feature Selection: Among the available attributes,
we focused on ‘Reference’ as the input signal, ‘Out Sync’
as the output signal following transmission through a chaos
receiver, and ‘Time’ as the temporal information.

Data Normalization: To facilitate consistent and mean-
ingful model training, we applied Min-Max scaling to
normalize the ‘Reference’ and ‘Out Sync’ signals to the range
of [0, 1].

D. MODEL SELECTION
Our choice to utilize classification models, as opposed to
regression models, is rooted in the fundamental objective of
our research. Our primary focus revolves around classifying
the ‘Out Sync’ signal, which spans a continuous numerical
range encompassing various float values. In contrast, the
corresponding ‘Reference’ input message assumes one of two
distinct values: either 0 or 1. Our primary aim is to deduce,
in the absence of any supplementary contextual information,
whether the ‘Out Sync’ signal corresponds to the ‘Reference’
value of 0 or 1.

This undertaking presents us with a complex challenge-
mapping a continuous linear signal into discrete categories-
effectively ‘‘synchronizing’’ the ‘Out Sync’ signal with the
underlying ‘Reference’ message. To tackle this synchroniza-
tion task, we have turned to classification models, purpose-
built for precisely this type of problem. These models excel
in categorizing data points into distinct classes.

By classifying the ‘Out Sync’ signal into two discrete
classes, 0 or 1, we establish a direct correspondence between
the observed signal and the original message it signifies. This
strategic choice empowers us to distill intricate continuous
information into a binary decision-making process, echo-
ing the essence of chaotic synchronization-a sophisticated
endeavor effectively encapsulated through classification.

In summary, our selection of classification models is
deeply rooted in the inherent challenge of mapping a linear
‘Out Sync’ signal into discrete categories, mirroring the

binary nature of the underlying ‘Reference’ message. This
choice aligns seamlessly with our overarching objective:
achieving synchronization between the output and input sig-
nals, even in the absence of additional contextual information.
Here is an expanded explanation of the rationale behind each
model selection:

Neural Networks (NN): Neural Networks are renowned
for their versatility and success across diverse domains.
We opted for NNs due to their adaptability and their ability
to effectively handle complex patterns inherent in our data.

Recurrent Neural Networks (RNN) and Long Short-Term
Memory (LSTM): Our task relies heavily on sequential
dependencies, making RNNs and LSTMs ideal choices.
LSTMs, in particular, were chosen to address the
well-documented vanishing gradient problem commonly
associated with standard RNNs.

Support VectorMachine (SVM): SVMs have demonstrated
noteworthy accomplishments in the classification of Elec-
tromyography (EMG) signals, serving as a reference point for
their potential applicability to our task.

This diverse selection of models reflects our commitment
to thoroughly investigate and address the unique challenges
posed by our synchronization task, leveraging the strengths
of each model to advance our understanding and achieve our
research objectives.

E. METRICS FOR ML PERFORMANCE EVALUATION
In the context of ML-based signal synchronization, precise
assessment of learning algorithms is essential to ensure the
selection of themost suitablemethod for ensuring the security
and reliability of the system. The choice of appropriate
performance metrics plays a pivotal role in quantifying the
quality of synchronization outcomes. Here, we review the
key metrics employed for the evaluation of machine learning
techniques in signal synchronization tasks.

Mean Absolute Error (MAE): MAE calculates the
average absolute difference between the predicted and actual
values in a linear regression problem as follows:

MAE =
1
n

n∑
i=1

|yi − ŷi|

MAE metric is resilient to outliers offering a streamlined
interpretation. A lower MAE demonstrates a better-fitting
model, with errors represented in the same units as the target
variable.

Mean Squared Error (MSE): This metric measures the
average of the squared differences between predicted and
actual values as described below:

MSE =
1
n

n∑
i=1

(yi − ŷi)2

MSE amplifies larger errors, making it sensitive to outliers.
MSE is frequently used in regression problems such signal
synchronization preventing negative and positive errors from
offsetting each other. This metric underscores the importance
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of accurate predictions by giving larger errors more weight in
the evaluation process.

Root Mean Squared Error (RMSE): RMSE metric is
the square root of the MSE, shown in the same units as
the target variable: (RMSE =

√
MSE). RMSE offers a

similar interpretation toMAEbut penalizes larger errorsmore
heavily. It is often employed in linear regression problems
where the emphasis is on the importance of larger prediction
errors.

R-squared (R2): R-squared calculates the proportion of
variance in the dependent variable that is predictable from
the independent variables in the regression model:

R2 = 1 −

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

R-squared metric ranges from 0 to 1, with higher values
indicating a better fit. While this metric offers insights on
how well a model is fit, it does not reveal whether the
model’s predictions are systematically too high or too low.
Hence, it needs to be considered in association with other
performance metrics when being used for evaluating the
performance of ML models.

F1 Score: The F1 score harmonizes precision and
recall, providing a balanced measure of classification per-
formance. It assesses the trade-off between true positives
and false positives, offering a holistic view of model
accuracy.

Accuracy:Accuracy represents the proportion of correctly
classified instances out of the total, serving as a general
indicator of model performance.

Confusion Matrix: The confusion matrix provides a
granular breakdown of classification outcomes, elucidating
true positives, true negatives, false positives, and false
negatives. It enables a detailed understanding of model
behavior.

F. EVALUATION METRICS SELECTION
In the classification tasks, the confusion matrix stands
as an indispensable tool, unveiling critical facets of a
model’s performance. It serves as a comprehensive blueprint,
dissecting the landscape of classification accuracy and errors.
The nuanced insights it imparts shed light on the subtleties
of model behavior, allowing for a richer understanding of its
capabilities.

Additionally, the inclusion of accuracy and the F1
score further enriches our evaluation. Accuracy acts as a
straightforward yet vital metric, quantifying the propor-
tion of correctly classified instances-a fundamental mea-
sure of the model’s overall correctness. The F1 score,
on the other hand, delves deeper, capturing the bal-
ance between precision and recall, particularly crucial
when handling imbalanced datasets. These metrics enhance
our ability to assess the model’s efficacy from multiple
angles.

G. ML IMPLEMENTATION FOR SIGNAL
SYNCHRONIZATION
Unsupervised clustering algorithms, such as K-means clus-
tering, K-Nearest Neighbors (KNN), and Density-Based
Spatial Clustering of Applications with Noise (DBSCAN),
can be used to simplify the tuning of parameters in the
reservoir computing technique. By clustering similar data
points, the number of parameters that need to be tuned
can be reduced, making the process less time-consuming
and computationally expensive. Furthermore, the use of
unsupervised clustering algorithms can address the issue
of overfitting by identifying the most relevant features for
the synchronization task. The use of ML methods, such
as reservoir computing, can also be complemented with
more traditional control theory techniques to overcome the
limitations of linear feedback control.

To test different ML algorithms for signal synchronization,
a Chua’s transmitter and receiver were implemented in
Mathlab Simulink. The data extracted from the out.m, out.X
and out.Sync of the circuit is shown in Fig.4. The out.m
represents the message, in our case, a pulse train that
needs to be ciphered and sent through the public channel.
out.X represents the message through the public channel.
No meaningful data (0 or 1 in our message) should be
extracted from this signal. In other words, out.X should show
no correlation with the message (out.m). out.sync is the data
that is decoded by the receiver; although it is not a perfect
0 and 1 scheme, this deciphered message is correlated with
the message. Here is where we aim to use different machine
learning algorithms to improve the correlation of out.sync
and out.m.

Fig. 5 presents the results of the experimentation conducted
to achieve signal synchronization between the input data
(out.m) and the desired output signal using various ML algo-
rithms. The objective of this study is to accurately retrieve the
original message from the encrypted message. Fig. 5a depicts
the original message (out.m), while Fig. 5b illustrates the
decoded message (out.sync) obtained through the traditional
method of thresholding. Thresholding in machine learning is
the process of applying a predefined threshold value to the
output of a model or algorithm to make binary decisions,
such as classifying data points as ‘‘positive’’ or ‘‘negative’’
based on their scores or probabilities, resulting in a Mean
Squared Error (MSE) of 13.00. To improve synchronization
and reduce MSE, alternative ML methods were explored.
For Fig. 5c, LSTM, or Long Short-Term Memory, is a
type of recurrent neural network (RNN) architecture in
machine learning designed to model andmake predictions for
sequences of data while effectively addressing the vanishing
gradient problem. Using LSTM resulted in a reduced MSE
of 6.96. Furthermore, the application of K-means clustering
in Fig. 5d led to an MSE of 6.96. The MSE decreased in
both cases compared to the traditional method. K-means
is a clustering algorithm in machine learning that groups
data points into ‘K’ clusters by minimizing the distance
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FIGURE 5. Comparative analysis of machine learning algorithms in signal synchronization - Subfigures (a) through (i) depict the signal processing
results using various machine learning techniques for secure communication. Subfigure (a) represents the original binary message signal. Subfigure
(b) shows the decoded message with a Mean Squared Error (MSR) of 13.00. Subfigures (c) to (i) display the synchronization results achieved by
LSTM, k-means, DBSCAN, SVM, and AdaBoost algorithms with respective MSR values provided, illustrating each algorithm’s efficacy in
reconstructing the signal with synchronization errors quantified for comparative evaluation.

between data points and their cluster centroids. Additionally,
it was observed that DBSCAN in Fig. 5e produced an MSE
of 12.56, indicating sub-optimal performance. DBSCAN is
a density-based clustering algorithm in machine learning
that identifies clusters by analyzing data point densities and
effectively handles noisy data. Among notable findings is the
significant enhancement achieved using SVM in Fig. 5f, with
an impressively low MSE of 5.25. Furthermore, employing
Adaptive Boosting (AdaBoost) in Fig. 5g resulted in an MSE
of 3.52, and utilizing Random Forest (RF) in Fig. 5h resulted
in an MSE of 4.00, both demonstrating promising outcomes
for signal synchronization.

However, it is important to note that although MSE is a
valuable evaluationmetric, it may not always fully capture the
effectiveness of synchronization. Other evaluation methods
should also be considered to provide a comprehensive
assessment of the synchronization performance.

To implement more metrics in the use of machine learning
in signal synchronization, we have examined four distinct
models: the Long Short-TermMemory (LSTM), an improved
LSTM variant, the Convolutional Neural Network (CNN),
and the Support VectorMachine (SVM). The objective was to
ascertain their capability to synchronize chaotic signals and
classify them into discrete categories, specifically ’0’ or ’5.’

1) LONG SHORT-TERM MEMORY (LSTM)
In our initial exploration, we employed a standard LSTM
architecture with a training duration of 100 epochs. The
model exhibited commendable performance, achieving an

F1 score of 0.8463, an accuracy rate of 85.19%, and a
Mean Squared Error (MSE) of 0.1481. The confusion matrix
revealed 243 true positives, 23 false positives, 58 false
negatives, and 223 true negatives (Fig. 6a).

2) IMPROVED LONG SHORT-TERM MEMORY (LSTM)
Building upon our initial findings, we advanced to an
enhanced LSTM model, extending the training duration to
150 epochs, employing the Adam optimizer, and implement-
ing a cross-entropy loss function. This model demonstrated
substantial improvement, boasting an impressive F1 score
of 0.9212, an accuracy of 91.77%, and a significantly
reducedMSE of 0.0823. The corresponding confusion matrix
unveiled 239 true positives, 27 false positives, 18 false
negatives, and 263 true negatives (Fig. 6b).

3) CONVOLUTIONAL NEURAL NETWORK (CNN)
Our exploration extended to the domain of Convolutional
Neural Networks (CNN), where the model underwent
rigorous training spanning 500 epochs. The CNN showcased
competitive performance, yielding an F1 score of 0.8634,
an accuracy rate of 86.29%, and an MSE of 0.1371. The
accompanying confusion matrix detailed 235 true positives,
31 false positives, 44 false negatives, and 237 true negatives
(Fig. 6c).

4) SUPPORT VECTOR MACHINE (SVM)
In parallel, we introduced the Support Vector Machine
(SVM), a classical machine learning algorithm known for
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FIGURE 6. Comparative confusion matrices for synchronization models (a) Confusion Matrix of Long Short-Term Memory(LSTM) Model(b) Confusion
matrix of improved LSTM model with more epochs and adam optimizer (c) Confusion matrix of convolutional neural network model (d) Confusion
matrix of support vector machine (SVM) Model. Despite a lower number of training epochs compared to the CNN model, Figure (b) illustrates that
the LSTM model showed better performance, excelling in both accuracy and mean squared error (MSE).

its robust classification capabilities. The SVM model, while
not as complex as neural networks, delivered compelling
results. It achieved an F1 score of 0.9068 and an accuracy
rate of 90.68%. The associated MSE stood at 0.0932. The
confusion matrix portrayed 248 true positives, 18 false
positives, 33 false negatives, and 248 true negatives (Fig. 6d).

The results from these experiments illuminate significant
variations in model performance, with the improved LSTM
model emerging as the frontrunner in synchronization
and classification tasks. This model, benefitting from an
increased number of epochs, an optimized optimizer, and a
sophisticated loss function, achieved the highest F1 score,
accuracy rate, and the lowest MSE among all models
considered. These findings underscore the pivotal role of

model architecture and training parameters in achieving
synchronization and classification accuracy within chaotic
signal systems.

Factors such as computational efficiency, real-time capa-
bilities, and generalization to different datasets are also
crucial aspects to be taken into account during the review
and selection of the most suitable algorithm for practical
applications of signal synchronization.

V. MACHINE LEARNING ATTACKS ON
ENCRYPTION SYSTEMS
In this section, we review the recent studies focused on
ML-based attacks in encryption systems. Although tradi-
tional encryption algorithms used in resource-limited devices
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FIGURE 7. Common attacks for communication focused on attacks appropriate for IoT, wearable, and resource-limited devices.

are capable of fulfilling their intended functions, they fall
short in ensuring the security of the personal data generated
by these devices and their sensors, making them susceptible
to frequent security breaches. To make our resource-limited
devices secure and reliable, it is crucial to implement security
measures at each layer, as depicted in Fig. 7, which shows the
potential security attacks that these devices may face [74].
Instances of security breaches have compelled the tech-

nology we use daily to prioritize research in the field of
cryptography. Notably, there have been many data leaks,
specifically from wearables and IoT devices. As an example,
the data of over 61 million users worldwide who were
using Fitbit and Apple devices [75] was exposed recently.
Wearable medical devices, such as cardiac implants [76],
[77], implantable insulin delivery pumps [78], [79], and
neurological implants [80], [81], are also vulnerable to
targeted attacks. As a result, there is a growing impetus to
enhance traditional encryption algorithms and explore new
ways of encryption that aim to bolster the overall security

and reliability of wearable devices and safeguard the sensitive
data and health information of users.

A discussion of common attacks on chaotic encryption is
discussed in our previous work [82]. ML has been researched
as a tool to attack chaotic encryption schemes by utilizing its
powerful pattern recognition capabilities against the inherent
unpredictability and complexity of chaotic systems. Although
the examples are not many, here we take a look at the use of
ML in attacking chaos. Most ML attacks on chaotic systems
focus on algorithms that can be trained to exploit patterns
and regularities within chaotic encrypted data, leading to
successful decryption attacks. These attacks leverage the
ability of ML models to recognize underlying patterns and
relationships, even in seemingly random encrypted data,
as discussed in Section III. Apart from this application,
ML can also be used in predicting encryption keys, as a
plaintext attack, and to predict key system parameters.

He et al. [83] developed a proof of concept for break-
ing chaos-based image encryption schemes. The approach

VOLUME 11, 2023 125761



J. Hwang et al.: Machine Learning in Chaos-Based Encryption: Theory, Implementations, and Applications

avoided the need for manual examination of encryption keys
to recreate decrypted images by using a low-dimensional
feature space and a deconvolutional generator. Encrypted
imageswere effectively decodedwith both static and dynamic
keys using the proposed method. As stated by the authors, the
accuracy rates of the regenerated images were 97.87% and
92.04%, respectively. The authors reached the conclusion that
their suggested method is automatic and key-independent,
thus making it more effective than previous approaches.

Wang et al. presented a deep learning-based known-
plaintext attack for chaotic cryptosystems [84]. The authors
proposed to encrypt images using two chaotic encryption
techniques, generating ‘‘plaintext-ciphertext’’ pairs that are
subsequently used to train two convolutional neural networks
as the decryption model. CNN, or Convolutional Neural
Network, is a deep learning architecture designed for image
and spatial data processing, using convolutional layers to
automatically learn hierarchical features and patterns from
data. Encoder-decoder networks transform input data into a
fixed-length representation and generate output sequences
from it. The authors used two encoder-decoder neural
networks, UNet and MSEDNet, as experimental models and
compared their efficiency and accuracy when attacking the
classic one-dimensional chaotic map and the proposed hybrid
chaotic map, which encrypts the R, G, and B channels of the
image separately for color images.

We can find the parameters in hyper-chaotic systems by
using ML algorithms. Time-delay nonlinear systems inhibit
their capability to exhibit hyper-chaos in a phase space
that has infinite dimensions, which makes it impossible for
systems with low dimensions to achieve this. We can offer
a higher level of computational security against embedding
reconstruction by using this characteristic of time-delay sys-
tems. In time-delay communication and signal coding (CSC)
systems, the crucial element to ensure secure communication
among the pairs is the time-delay signature (TDS). In case
an unauthorized hostile attacker manages to breach TDS,
the system’s key space gets eventually reduced, and the
dynamics of CSC systems get completely reconstructed.
Thus, the identification process is considered a critical aspect
for assessing the security level of such a system in the
TDS of a time-delay CSC system. Gao et al. introduced an
approach utilizing CNN-based image recognition to extract
the TDS [85]. Chen et al. also used a CNN-based deep
learning method to extract the TDS in a time-delayed chaotic
system [86]. Simulations to demonstrate the effectiveness
of this method in handling robust nonlinearity were used
in the works mentioned above, thus addressing the short-
comings of current techniques. Not only for controlling and
synchronizing chaotic systems but also for their application
in various other fields, the understanding of time delays holds
significant importance in this process.

The worthy discussion of adversarial ML can also be
identified as a form of attack in any system using ML.
Moreover, adversarial ML is defined as the practice of using

malicious input data to deceive or misguide an ML model.
AdversarialML has been commonly used to execute an attack
or cause a malfunction in an ML system where the same
instance of an adversary can be manipulated accordingly to
fool multiple models of different databases or architectures.
After further discussions and implementations, it is stated
that it can be deployed in a variety of applications, including
attacking encryption systems.

An adversary or attacker is a person or entity who seeks
to infiltrate a system to achieve specified aims. As shown
in Fig. 8 an opponent may launch attacks against ML at
two stages: training and testing. During training, the attacker
may try to influence the model or the dataset by introducing
fake data or changing existing data. After the model has
been trained, testing or inference attacks occur. In ‘‘Data
Access’’, the attackers possess some level of access to the
dataset, enabling them to construct an alternate model that
can be utilized during the testing stage. The act of poisoning
involves the attackers changing either the dataset or the
model to create a modified trained model. To carry out
‘‘Poisoning,’’ the attackers can use various methods, such as
manipulating the current training set, introducing fake data
into the training set, or corrupting the learning algorithm
through logic manipulation. Locate adversarial examples that
can bypass accurate outputs from the model, also known
as an ‘‘Evasion’’ attack. ‘‘Oracle’’ attacks consist of several
methods, such as ‘‘Extraction’’ attacks, where the attacker
endeavors to extract the model’s parameters by analyzing its
predictions, ‘‘Inversion’’ attacks, where the attacker seeks to
reconstruct the training set, including private information;
and ‘‘Membership Inference’’ attacks, where the attacker
strives to ascertain whether the input data was part of the
model’s training set.

VI. CHALLENGES AND OPPORTUNITIES
In this section, we explore the research challenges and
opportunities of utilizing ML in chaos-based encryption.

A. COMPLEXITY OF ML SOLUTIONS
Challenges: Wearable devices, in general, are resource-
constrained devices that typically possess limited processing
power and memory space. These limitations pose significant
challenges when it comes to implementing complex ML
algorithms on such computing devices. ML algorithms,
particularly deep learning models, can be computationally
intensive and require significant processing power and mem-
ory resources. The complexity and computational demands of
ML algorithms can strain the capabilities of wearable devices.

Opportunities: Optimizing ML models to operate effi-
ciently within the resource limitations of such devices
is a research opportunity to explore. For example, it is
possible to develop lightweight deep-learning models with
reduced inference times for resource-constrained devices.
Furthermore, the usage of compression methods such as low-
rank factorization, parameter sharing, lossy weight encoding,
and pruning can be useful in such a scenario. Additionally, for
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FIGURE 8. Characterization of adversarial machine learning attacks.

model optimization and compression of resource-constrained
devices, game-theoretic techniques, swarm optimization, and
genetic algorithms might be pursued. Overcoming these
challenges is of utmost importance to unlocking the full
potential of ML algorithms in wearable devices, enabling
them to efficiently and securely support a wide range
of critical applications, including healthcare monitoring,
activity tracking, and personalized services.

B. AVAILABILITY OF TRAINING DATA
Challenges: The availability of training data poses an
important challenge for ML models utilized in secure
chaotic communication. Unsupervised models require a
significant volume of high-quality training data to effectively
capture the intricate dynamics and patterns within secure
communication systems. However, obtaining a sufficient
amount of reliable training data that accurately represents
the complex and dynamic nature of chaotic signals can
be difficult. When training data is limited or inadequate,
it can negatively impact the performance and generalization
capabilities of ML models, impeding their effectiveness in
secure communication.

Opportunities: With the vast amount of data generated
by the healthcare sector and the growing popularity of
IoT devices, partnering with hospitals and wearable device
companies can be a viable option for researchers to create and
publish related real-world datasets with privacy protection.
In addition, utilizing Generative Adversarial Network (GAN)
systems to generate synthetic data while ensuring that the
dataset is distributed in a representative manner can also be
pursued.

C. ML PRIVACY CONCERNS
Challenges: Privacy concerns pose a significant challenge in
the use of ML algorithms within wearable devices, as these
algorithms rely on sensitive user data for accurate predictions.

Wearable devices gather a vast array of personal health and
activity information, encompassing heart rate, sleep patterns,
location data, and more. Consequently, safeguarding the
privacy and security of this sensitive user data becomes
paramount. Therefore, it is important to safeguard the privacy
and security of users’ sensitive information.

Opportunities: To address privacy concerns, the ML
models need to be designed and well-tuned according to
robust privacy protection and enhancement mechanisms,
including data anonymization, randomization, and secure
encryption storage. In addition, the use of privacy-preserving
ML techniques such as federated learning, distributed ML,
and differential privacy to train models on decentralized data
while upholding individual user privacy is another important
direction to follow in order to prevent unauthorized access
and data breaches.

D. REAL-TIME PROCESSING
Challenges: While ML has revolutionized various fields,
it can have adverse effects on real-time processing applica-
tions. Real-time processing typically requires immediate and
timely responses, which may be challenging to achieve with
complex ML algorithms. ML models often involve compu-
tationally intensive operations, such as training large neural
networks or performing extensive feature extraction, which
can introduce significant processing delays. Moreover, the
unpredictability and variability of ML algorithms can make
it difficult to guarantee consistent real-time performance.
Additionally, the need for continuous model updates and
retraining can further complicate real-time processing, as it
may require significant computational resources and disrupt
the real-time workflow.

Opportunities: When integrating ML into real-time
processing systems, careful consideration of the compu-
tational requirements, algorithmic complexity, and latency
constraints is crucial to mitigate the adverse effects and
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ensure efficient and reliable performance [87]. After such
analysis, distributed computing can be researched using
node-neighboring resources; in addition, finding solutions
to the multilinearity problem, which arises when two or
more independent variables are strongly associated with one
another in a regression model, can also be a promising
direction.

E. SECURITY VULNERABILITIES
Challenges:WhileML algorithms can enhance performance,
they also introduce security vulnerabilities in chaos-based
communication systems. A significant concern is the
side-channel leakage problem, where unintended informa-
tion is unintentionally leaked through physical channels,
such as power consumption or electromagnetic emissions.
Adversarial attacks exploit these channels to compromise
communication integrity, confidentiality, and privacy.

Opportunities: To secure ML-based chaos-based com-
munication systems, a multi-layered proactive approach is
required. Comprehensive threat assessments should identify
vulnerabilities and analyze potential side-channel leakage
sources. Techniques like adversarial training improve system
resilience while exploring advanced encryption schemes and
securing ML models can further enhance security.

VII. CONCLUSION AND FUTURE DIRECTIONS
In this paper, we highlighted the potential of ML algorithms
in addressing reliability and security concerns in chaos-based
encryption as a promising method for secure communi-
cation in resource-constrained devices such as wearable
devices. We comprehensively explored ML techniques for
understanding chaotic dynamical systems and improving
signal synchronization. We gave more prominence to the
in-depth exploration of the methodological aspects of
machine learning. We also investigated state-of-the-art ML-
assisted defenses and attacks on chaos-based encryption and
reviewed the advantages and limitations of ML techniques
in secure communication systems. We further expanded the
applications to emerging areas like IoT, cloud computing,
and wireless networks. By shedding light on the growing
role of ML techniques in chaos-based encryption systems
and their challenges and opportunities, this research laid
a solid foundation for further advancements in intelligent,
secure chaotic communication on wearable devices. It further
provided valuable insights for researchers, developers, and
practitioners to design more secure and robust chaos-based
encryption schemes.

A. FUTURE SCOPE
As of the current state of research, there are notable gaps
in the literature surrounding chaotic systems and their
applications. Firstly, there is a need for more comprehensive
studies that bridge the gap between theoretical chaotic
models and practical applications.While theoretical advance-
ments have been substantial, their seamless integration into
real-world scenarios requires further exploration. A more

profound grasp of the fundamental mechanisms that govern
chaotic behavior in various systems is also crucial. This
entails delving into the intricacies of chaotic phenomena
in diverse domains such as engineering, cryptography,
biology, and beyond. There is room for advancements
in developing robust and efficient algorithms tailored for
chaotic applications. Future research should also explore
the potential interplay between chaos and emerging tech-
nologies like artificial intelligence and quantum computing.
As we move forward, interdisciplinary collaboration between
mathematicians, engineers, physicists, and other experts will
play a pivotal role in realizing the complete potential of
chaotic systems across a broad spectrum of applications.
With concerted efforts, the future outlook for chaotic system
applications appears promising, poised to revolutionize
numerous fields and drive innovation in unforeseen ways.
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