
Risk-Aware and Explainable Framework for Ensuring
Guaranteed Coverage in Evolving Hardware Trojan Detection

Rahul Vishwakarma
Computer Engineering & Computer Science Department

California State University Long Beach
Long Beach, CA, USA

rahuldeo.vishwakarma01@student.csulb.edu

Amin Rezaei
Computer Engineering & Computer Science Department

California State University Long Beach
Long Beach, CA, USA
amin.rezaei@csulb.edu

Abstract—As the semiconductor industry has shifted to a fabless
paradigm, the risk of hardware Trojans being inserted at various
stages of production has also increased. Recently, there has been a
growing trend toward the use of machine learning solutions to detect
hardware Trojans more effectively, with a focus on the accuracy of the
model as an evaluation metric. However, in a high-risk and sensitive
domain, we cannot accept even a small misclassification. Additionally, it
is unrealistic to expect an ideal model, especially when Trojans evolve
over time. Therefore, we need metrics to assess the trustworthiness of
detected Trojans and a mechanism to simulate unseen ones. In this
paper, we generate evolving hardware Trojans using our proposed novel
conformalized generative adversarial networks and offer an efficient
approach to detecting them based on a non-invasive algorithm-agnostic
statistical inference framework that leverages the Mondrian conformal
predictor. The method acts like a wrapper over any of the machine
learning models and produces set predictions along with uncertainty
quantification for each new detected Trojan for more robust decision-
making. In the case of a NULL set, a novel method to reject the decision by
providing a calibrated explainability is discussed. The proposed approach
has been validated on both synthetic and real chip-level benchmarks and
proven to pave the way for researchers looking to find informed machine
learning solutions to hardware security problems.

Index Terms—Hardware Trojan, Evolution, Guaranteed Coverage,
Calibrated Explainability, Conformal Prediction

I. INTRODUCTION

Hardware Trojan (HT) insertion is a malicious modification made
to the design of a hardware component that can cause a device to mal-
function, leak sensitive information, or even cause physical damage
[1]. As the semiconductor industry has been adopted a fabless model,
the possibility of HTs being inserted at different manufacturing stages
increases, presenting a significant security threat to hardware systems.
Traditional HT detection techniques such as signature-based methods
[2] that analyze the Integrated Circuit (IC) functionality, layout,
and timing, are often ineffective against sophisticated HT insertion
attacks, especially when the Trojans can be designed to evolve over
time. Therefore, there has been a growing shift towards the use of
Machine Learning (ML)-based solutions for a more effective and
efficient approach to detecting HTs. However, even after adhering
to the ML evaluation best practices, it may backfire in the context
of hardware security [3]. The majority of the existing ML-based
solutions do not provide enough information on the dataset, where the
distribution between classes differs substantially, and the evaluation
of attacks under the concept drift or evolution of new incoming
dataset. In this context, a detailed study has been conducted in [4] to
understand if ML is the silver bullet for each and every problem in
hardware security domain [5].

When using any ML method, one problem that we foresee is
that even if a model claims to have a very small false positive
rate, there is no guarantee that the same will be applicable for
unseen data. This is due to concept drift, which is caused by the

attacker’s intelligently modified version of HT insertion techniques.
One missed false positive can have not only a significant financial
and economic impact but can also be life-threatening in high-risk,
sensitive domains, such as implantable devices. Therefore, there is a
need for additional metrics that can complement the existing model
evaluation techniques, provide reliable decisions, and guarantee cov-
erage for the predictions. In this work, we propose PALETTE, an
exPlainable frAmework for evoLving hardwarE Trojan deTEction
in risk-sensitive domains based on the algorithm-agnostic statistical
inference technique of conformal prediction [6] and provide risk-
aware theoretical guaranteed coverage of predictions valid under
covariate shift [7]. Our method is non-invasive which can be applied
as a wrapper over existing ML models. In addition, rather than simply
providing a point prediction, i.e., the detected circuit is infected with
Trojan or not, it provides a set prediction of the detected labels
resulting in the correct class being included 95% of the time on
average (i.e., α = 0.05).

In this paper, we pave the way for hardware security researchers
to apply ML to their problems and create awareness about risk-
controlled predictions with guaranteed coverage.

A. Related Works

HT detection using traditional ML techniques has primarily fo-
cused on modeling methods, and it involves developing and imple-
menting algorithms that can improve overall accuracy in detecting
HTs. The input to the model consists of the features extracted from
the Register Transfer Level (RTL) code as tabular and graphical
representations of the circuit. Different surveys on ML for detecting
HT attacks have been conducted in [8], [9], [10], and [11]. In [12]
and [13] image classification is used, and in [14] multimodal image
processing is utilized. Most of the papers have focused on feature
extraction from gate-level netlists and using ML models such as
Support Vector Machine (SVM) [15], Neural Network (NN) [16],
eXtreme Gradient Boosting (XGB) [17], and Random Forest (RF)
classifier [18].

With the success of Reinforcement Learning (RL) in other do-
mains, a few works have adapted RL in the hardware security
domain, such as RL-based static detection [19], and RL with adaptive
sampling for on-chip detection [20]. In these methods, a common
approach involves training the classifier model initially and then
adjusting the hyperparameters of the classifier. This adjustment
process aims to minimize the false negative rate and, in turn, improve
the model’s accuracy. Graph Neural Network (GNN) [21], [22] and
Abstract Syntax Tree (AST) [23] are generated for the RTL code;
however, it is still not clear how the graphs can carry forward not
only the structural but also the behavioral attributes of the circuit.

Fig. 1. The input feature is passed to a conventional machine learning hardware Trojan detector. This detector produces a result and is compared to conformal
inference, which provides an uncertainty measure and a confidence set for each detected evolved hardware Trojan.

Furthermore, dealing with concept drift is crucial after deploying a
model because the newly acquired data can be significantly dissimilar
to the data the model was originally trained on. One such work in
security applications is shown in [24] which involves the mapping of
data samples into a space with fewer dimensions and the automatic
learning of a distance function that can evaluate the differences
between them. The concept drift, however, has not been studied in
the HT domain even though HTs can evolve over time.

The explainability aspect of ML is also covered in the hardware
security domain; for example, [25], [26], and [27] have used SHapley
Additive exPlanations (SHAP) on benchmark datasets and have
shown promising results. However, a drawback of utilizing SHAP
is that it comes with inherent issues such as disregarding causality
and being affected by human bias. It merely assesses the extent to
which features contribute to a given dataset, without providing an
explanation of how they would behave in the actual world, which
may differ from the dataset used.

B. Contributions

In this paper, we answer two questions. First, can we quantify the
uncertainty associated with the HT prediction outcome and guarantee
the validity of the predicted label with a handful of highly imbalanced
data points? Specifically, we are interested in the possibility that a
ML classifier can predict the truth label of a new data point with 95%
provable guaranteed coverage, which is required in a risk-sensitive
domain. Designing such a system can be beneficial to the decision
maker who is going to investigate if the detected label is “Trojan-
Infected”. Second, can we rank the detected “Trojan-Infected” circuit
for more informed treatment? Answering this question will help the
designer prioritize which one to take action on first for mitigation.

The big picture of our method compared with state-of-the-art
ones is shown in Fig. 1. In this diagram, we also show the current
limitations of using any of the ML frameworks for HT detection.
First, they output the prediction as either label-A or label-B; second,
there is a lack of trust in the prediction because not all ML classifiers
are well calibrated; and third, there is no guarantee of coverage of
the predictions. Our main contributions are as follows:

• Suggesting the notion of HT evolution and providing an inno-
vative method of creating evolving HTs with high precision by
conformalized generative adversarial network.

• Discussing the novel notion of guaranteed coverage of the
prediction set and proposing tunable significance level by lever-
aging the statistical inference tool of conformal prediction for
HT detection.

• Defining the notion of algorithm-agnostic and explainability-
aware reject prediction made by the ML model. When the model
is uncertain of identifying the evolving Trojan, it simply says, “I
don’t know,” rejecting the prediction and passing it to a human
for manual investigation.

• Proposing a ranking mechanism for the evolved Trojans by
assigning the confidence score from the prediction and validating
the proposed HT detection method both on synthetic and real
chip-level HT-induced benchmarks.

II. PRELIMINARIES

A. Calibrated Prediction

Calibration involves ensuring that a model’s confidence score
accurately reflects the true probability of the prediction’s correctness
[28]. Let X be the input data, and Y be the output label. Given a
training dataset D = (x1, y1), (x2, y2), ..., (xn, yn), the goal is to
learn a function f that can predict the correct output label y for a
given input x. The output of the model for an input x can be denoted
as f(x), and the true probability of the prediction’s correctness can
be denoted as P (y = 1|x). A calibrated model produces a confidence
score g(x) that reflects the true probability of correctness of the
prediction. The goal of calibration is to ensure that the confidence
score g(x) is well-calibrated, i.e., P (y = 1|g(x) = p) = p for all p
in the range [0, 1].

Calibration is a crucial aspect in HT detection since it aids in
determining the likelihood of the existence of a Trojan in a circuit,
which can have a significant impact on decision-making. In situations
where a model’s confidence score is high, but the likelihood of a
Trojan’s presence is low, it is reasonable to assume that the circuit
does not contain a Trojan. Conversely, if the confidence score is low
but the likelihood of a Trojan’s presence is high, further investigation
of the circuit is necessary.

B. Conformal Prediction

Conformal prediction [6] is a ML framework that quantifies
prediction uncertainty by generating prediction sets. It enhances
the inference of traditional models, ensuring reliable validity and
enabling confidence estimation for individual predictions. In the
context of detecting HTs, label-conditional validity is a vital property
when dealing with an imbalanced dataset where label proportions
differ significantly. This is particularly relevant since the likelihood
of encountering a Trojan on a circuit is generally low. In addition,
it is worth noting that minority classes are often disproportionately
impacted by errors when label-conditional validity is absent [29].
However, this issue can be mitigated by ensuring label-conditional

Algorithm 1: Mondrian ICP
Input : Training data D, test instance x, significance level

α, number of trees T , and maximum tree depth d.
Output: Prediction set C(x) for x.

1 Divide D into T disjoint subsets D1, . . . , DT ;
2 for t← 1 to T do
3 Sample D′

t from Dt by recursively partitioning Dt along
randomly chosen hyperplanes until each partition
contains at most 2d points.

4 Train a classification model Mt on D′
t.

5 Compute the conformity scores st(x) of x with respect to
each model Mt.

6 Sort the conformity scores st(x) in decreasing order.
7 Compute the p-values pt of the T conformity scores st(x)

using the formula pt =
T−t+1

T
.

8 Compute the threshold h such that h = st(x) if pt > α,
otherwise h =∞.

9 Construct the prediction set C(x) as the set of all labels y
such that st(y) ≥ h for all models Mt.

10 return C(x)

validity, which guarantees that the error rate for even the minority
class will eventually converge to the chosen significance level in the
long term. Sometimes, conformal prediction may produce uncertain
predictions, meaning that prediction sets contain more than one value.
This occurs when none of the labels can be rejected at the specified
significance level.

When using conformal prediction, the confusion matrix differs
slightly from the conventional one due to the unique nature of
prediction sets, which consist of multiple values rather than a single
value. In the case of binary classification, it is essential to consider
the number of correctly predicted examples, which have a prediction
set containing only the correct label, as well as the number of
incorrectly predicted examples, where the prediction set includes only
the incorrect label. Additionally, it is important to take into account
the number of inconclusive predictions that occur when the prediction
set contains both labels, as well as the number of examples with an
empty prediction set. Furthermore, in some cases, it may be more
appropriate to provide a single value point prediction instead of a
prediction set or interval in a hedged forecast. In such cases, selecting
the label with the highest p-value is a simple and reasonable option.
The point prediction can be hedged by incorporating additional
information that describes the uncertainty.

Our work relies on Mondrian Inductive Conformal Prediction (ICP)
[30] in Algorithm 1 and to decrease the rate of false negatives in alert
systems, we require class-based authenticity for samples classified as
“Evolving Trojan”. Additionally, we must ensure that the samples
labeled as“Evolving Trojan” are indeed genuine to attain this goal.

When calculating the non-conformity scores, we only consider the
scores related to the examples that share the same class as the object
xn+1, which we are testing hypothetically as shown below:

p
Ck
n+1 =

∣∣∣{i ∈ 1, . . . , q : yi = Ck, α
Ck
n+1 ≤ αi

}∣∣∣
|{i ∈ 1, . . . , q : yi = Ck}|

C. Guaranteed Coverage of Prediction

In the domain of HT detection, it is not only important to have
a high level of confidence in the predictions made by a model but
also a guarantee of the coverage of each prediction. The property of

guaranteed coverage is an inherent property of conformal prediction,
which provides statistical guarantees of the correctness of the model’s
predictions [31]. The theoretical guarantee of coverage is based on
the significance level, which is the probability of the model making
a mistake. For example, if we set the significance level to 0.05, it
means that we allow the model to make mistakes 5% of the time.

The theoretical guarantee of coverage is valid for any input x, that
the true output label y will be contained in the prediction set C(x)
with a probability of at least 1−α, where α is the significance level.
Mathematically, this can be expressed as:

P (y ∈ C(x)) ≥ 1− α

In other words, the probability of making a mistake is bounded by
α, and as α decreases, the size of the prediction set decreases, leading
to higher confidence in the model’s predictions. For example, if we
set α = 0.05, it means that we are 95% confident that the true output
label y is contained in the prediction set C(x) for any input x. The
use of conformal prediction provides a strong theoretical guarantee
of the correctness of the model’s predictions in the context of HT
detection, and the corresponding proof is given in Theorem 1.

Theorem 1. Let D be a probability distribution over a set X×{0, 1},
where X is a set of input features and {0, 1} is the set of labels. Let
f : X → {0, 1} be a binary classifier, and let ϵ ∈ (0, 1) be a
confidence level. Then, the conformal prediction algorithm outputs a
set of predictions C(x) ⊆ {0, 1} for each input x ∈ X such that:

P[(x, y) ∼ D, y ∈ C(x)] ≥ 1− ϵ

where (x, y) ∼ D denotes sampling a pair (x, y) from the
distribution D.

Proof. The proof follows from the construction of the conformal
prediction algorithm. Given an input x, the algorithm outputs a set
of predictions C(x) based on the observed labels of the training
examples with similar input features to x. The algorithm guarantees
that each prediction in C(x) has a p-value less than or equal to ϵ for
any new input with the same feature vector as x. Since the algorithm
outputs a set of predictions, the probability that at least one of the
predictions is correct is at least 1− ϵ.

Corollary 1. Let D, f , and ϵ be as in Theorem 1. For any sample
size n, the conformal prediction algorithm outputs a set of predictions
C(x1), . . . , C(xn) for each input x1, . . . , xn ∈ X such that:

P[∀i ∈ {1, . . . , n}, (xi, yi) ∼ D, yi ∈ C(xi)] ≥ 1− ϵ

where (xi, yi) ∼ D denotes sampling a pair (xi, yi) from the
distribution D for each i.

Proof. The proof follows from a union bound over the n samples:

P[∀i ∈ {1, . . . , n}, (xi, yi) ∼ D, yi ∈ C(xi)]

≥ 1−
n∑

i=1

P[(xi, yi) ∼ D, yi /∈ C(xi)]

≥ 1− nϵ

where the second inequality follows from Theorem 1.

III. NOTION OF EVOLUTION & HARDWARE TROJANS

Darwin, in his book, On the Origin of Species, referred to “descent
with modification”, instead of evolution. Further, a more expansive
definition of evolution was given by Futuyma [32]: “biological
evolution is change in the properties of groups of organisms over the
course of generations; it embraces everything from slight changes in
the proportions of different forms of a gene within a population to
the alterations that led from the earliest organism to dinosaurs, bees,
oaks, and humans”. Now, we narrow down the notion of evolution
for HTs based on the following assumptions:

• The structural (genotype) and behavioral (phenotype) character-
istics of HTs change over a period of time, and the changes are
induced by the attacker;

• Structural changes can be mathematically formulated for the
evolved Trojan as

EHT → HT■HTstructural changes

where HT is an existing Trojan and ■ is the operation for
structural changes which creates an evolved Trojan EHT ;

• Behavioral changes are mapped with natural selection, which is
the driving force for evolution. The attacker designs the HT such
that it adapts to the IC (ecosystem) and its malicious impact is
not easily detectable on the circuit. (i.e., it increases its chance
of survival.)

We use the above assumption to include the notion of evolution
and derive an evolved dataset in a ML-based HT detection engine. In
the context of HTs, we can either detect the evolution or predict the
evolution way ahead of time. The detection can be performed using
anomaly detection [33]; however, here we will be focusing on the
prediction of evolution. If we can predict the evolutionary changes
in the dataset, a specific treatment can be performed to mitigate the
impact of HT insertion. To the best of our knowledge, we have not
come across any work in the literature that considers the evolutionary
aspect while designing HT detection approaches.

The evolutionary dataset optimization discussed in [34] optimizes
any real-valued function over a subset of the space of all possible
datasets. It is not feasible to adapt this method for our use case
as our real-time data will be Non-Independent and Identically Dis-
tributed (Non-IID). An alternate approach can be to use evolutionary
algorithms, as discussed in Box2d [35]. There, the problem statement
is to evolve the structure of a toy car, provided the geometry of the
car shape is translated to chromosomes. The issue with this approach
is that we should know how the evolved car looks; however, in our
case, we never know the structure of the evolved Trojan.

A. Genetic Algorithm

Genetic Algorithms (GAs) [36] have been used to evolve the
architecture of NNs for understanding the security of logic locking
[37]. The most challenging part of using GA is designing a fitness
function. In our case, one possible design of fitness can focus on
the ensemble efficiency of detection methods and then compare the
similarity of the child Trojan with the list of HTs in a dictionary.
However, the limitation of this fitness function is that it will never
be able to estimate the fitness of Trojans that are out of distribution.

B. Generative Adversarial Network

Based on the game theory and optimization approach, the objective
of generative modeling [38] is to analyze a set of training examples
and acquire knowledge about the likelihood distribution that created
them. Generative Adversarial Network (GAN) has been successfully

Algorithm 2: Conformalized GAN
Input : Training dataset D = {(xi, yi)}ni=1, where xi ∈ Rp

and yi ∈ {0, 1} are the feature vector and label for
the i-th example, respectively; significance level α;
number of conformal predictors M ; GAN generator
G; discriminator model D

Output: Conformalized discriminator model DCP

1 for m = 1 to M do
2 Dm ← bootstrap sample of D;
3 Train GAN generator Gm on Dm;
4 Generate synthetic dataset Dm

synth = {Gm(zi)}ni=1, where
zi ∈ Rk are random noise vectors;

5 Train discriminator model Dm on Dm ∪ Dm
synth;

6 for i = 1 to n do
7 Xi ← {xi} ∪ {Gm(zi)}Mm=1, where zi ∈ Rk are random

noise vectors;
8 CPi ← conformal predictor trained on (Xi, yi) with

significance level α;
9 pi ← CPi(D(xi));

10 Train conformalized discriminator model DCP on
{(xi, yi, pi)}ni=1;

11 For each sample xi in the test set Dtest, make a prediction
based on whether D(xi) is within the prediction interval Ii:

yi =

{
1 if D(xi) /∈ Ii

0 if D(xi) ∈ Ii

12 return DCP

used for detecting fake images [39] and text-to-image synthesis [40].
In the recent past, there has been a shift in focus towards the
utilization of GANs for working with tabular data. An instance of
this approach is used for conditional GAN, as demonstrated by [41],
which models tabular data and is also effective with imbalanced data.

Here are three prime motivations for using GAN for synthesizing
the HT dataset.

1) Highly Imbalanced Data: In a real-time scenario, the labels
for Trojan-Infected circuits are very rare and difficult to detect. This
gives rise to the problem of an imbalanced dataset. Based on the
existing literature, we believe GANs can be used to generate a more
realistic synthetic dataset that complements the training phase.

2) Non-IID Case for Law of Large Number: The evolved Trojan
may or may not be from the same distribution, and for this reason
we have to consider the case of Non-IID random variables. One such
an example is demonstrated in [42]. We also know that for a large
enough dataset with Non-IID samples, the sample mean will converge
to the true population mean as the sample size increases. This implies
that as the size of the dataset increases, the statistical properties of
the data become more reliable and consistent. Thus, the larger the
dataset, the more accurate the model is likely to be, provided that
there are enough computational resources to effectively process the
data. The proof given in [43] for the strong law of large numbers
can be generalized to an r-dimensional array of random variables
where the sufficient condition becomes E

(
|X|

(
log+ |X|

)r−1
)

<

∞ based on the theorem and corresponding proof for Non-IID given
in [44]. The Non-IID case is worthy of our attention, as evolved HT
might not represent the same distribution of population in real-time.

3) Risk Sensitive Application: Given the potential for significant fi-
nancial losses, we cannot afford to tolerate even a small probability of

Fig. 2. PALETTE: Proposed solution showing the method to design evolving hardware Trojan by tuning conformalized generative adversarial network and
using the evolved dataset to make informed, risk-aware predictions with guaranteed coverage.

a false positive. To mitigate this, we start by designing a near-realistic
synthetic dataset using GAN by conformalizing the discriminator and
generator.

IV. DESIGNING & PREDICTING EVOLVING HARDWARE TROJANS

Our proposed evolving HT detection method called PALETTE is
shown in Fig. 2 with four major components.

1 As with any ML-based solution, the first step is to extract
the dataset, and in the case of HTs, we can have images, tables,
and graphs as input dataset for HT classification. For example, the
features extracted from an IC can be Scanning Electron Microscope
(SEM) images, as used in [45], [46]. In our case, we have used the
features extracted based on code branching from the TrustHub chip-
level Trojan dataset [47] and the netlist synthetic dataset based on
GAINESIS [48].

2 We introduce the Conformalized GAN algorithm, which
is illustrated in Algorithm 2. Our algorithm is inspired by [49],
which leverages principled uncertainty intervals to generate high-
quality images from corrupted inputs, and the uncertainty intervals
provide a guarantee of containing the true semantic factors for any
underlying generative model. Motivated by their work, we generate
high-quality evolved representation of HTs from existing Trust-Hub
dataset [47] and the netlist synthesis GAINESIS dataset [48]. The
algorithm utilizes conformal prediction to generate evolving HTs and
determine its associated level of confidence using prediction intervals.
A comparison of Trust-Hub source dataset with the synthetically
generated data, which we call the evolved dataset, is shown in Fig.
3. In contrast with traditional GANs our proposed method provides
a more reliable means for generating evolving HTs.

3 The dataset is further fed as input to the conformal inference
engine, which outputs set prediction instead of point predictions based
on the significance level. The method is algorithm-agnostic as any
ML classifier such as statistical or deep learning can be used as shown
in Fig. 2. The non-conformity score is calculated for each prediction.
The p-value represents the probability that the prediction is correct
and is used to determine the guaranteed coverage. The important

part of the solution is how we interpret the results in a risk sensitive
domain where we cannot tolerate even a single wrong decision.

4 We derive four different inferential use cases based on con-
formal inference. The motive is to quantify the uncertainty associated
with each prediction and reduce the False Discovery Rate (FDR) for
Trojan-Free (TF), Trojan-Infected (TI), or Evolving Trojan (T-EV).
The first is guaranteed coverage, which claims that based on the user-
defined significance level, the predicted label will belong to that class.
Here, considering the degree of risk associated with the prediction, a
significance level is defined and applied to the p-values of each label
for the data point of the circuit. The second is an inherent property of
conformal prediction that results in a set prediction which can have
all the labels {TF, TI, T-EV}, a combination of labels {TF, T-EV} or
{TI, T-EV}, or a single label {TF}, {TI}, or {T-EV}. The third, ranks
the predicted HTs by calculating the confidence of each prediction
and using it to rank the severity of being infected with a Trojan (TI, T-
EV). The purpose of ranking is to prioritize which one to take action
on first for mitigation. Finally, the fourth is calibrated explanation

Fig. 3. Comparison of real and synthetically generated dataset on Trust-Hub
chip-level Trojan dataset.

for the predictions where the model says: “I don’t know” and rejects
the prediction. The proposed method overcomes the issues of local
explanations by SHAP as discussed in Section I-A and provides a
calibrated approach to reasoning out “why” a certain prediction has
to be rejected. This is achieved by a NULL set, indicating that the
model is not able to output the prediction for a specific significance
level (1 - α). These four risk-aware, tailored prediction use cases are
discussed with experimental results in Section V.

V. EXPERIMENTAL RESULTS

In this section we share the experimental results on two datasets.
First is GAINESIS [48] synthetic dataset with binary labels and
second is using Trust-Hub chip-level Trojan dataset [47]. This dataset
includes VHDL or Verilog source code files for each IP core design,
which contain both malicious and non-malicious functions. The
malicious functions are often embedded within conditional statements
that are seldom executed. Consequently, the ML features are extracted
from these conditional statements. We used Python (3.9) and imple-
mented the solution on macOS (13.3.1) having 8 GB RAM with built-
in GPU. The experimental results with source code and the dataset
are hosted on GitHub 1.

A. Evolved Dataset

We first generated 10,000 data points using the proposed confor-
malized GAN with the given source dataset and picked only 20%
of the evolved dataset. The generated dataset has labels TFG and
TIG, where as the source dataset has labels TFS and TIS . In our
evolved dataset, we create three labels as shown below. First, Trojan-
Free (TF) which consists of TFS and TFG; second, Trojan-Infected
(TI) where we only consider the label TIS ; finally, the third label is
Evolved Trojan (T-EV) which consists of the label TIG.

Label = {TF, TI, T − EV }

The dataset is split into training set, calibration set, and test set
with ratio 2:1:1. In training dataset we have 1436 TF, 114 TI, and
308 T-EV. For calibration, we have 470 TF, 33 TI, and 117 T-EV.
Finally, we have 18% of T-EV in calibration set and 16% each in
train and test.

B. Baseline Model

We can choose any of the classification algorithms as a baseline
model because PALETTE, as described in Section II-B, is algorithm-
agnostic. Here, we have used logistic regression as a classifier to
detect the evolving HTs, and we evaluate the accuracy of the models
as a performance metric. If we use logistic regression to detect HTs,
the overall accuracy is 0.85, while if we use conformal inference
as a wrapper over the logistic regression, the accuracy increases
to 0.88 for α = 0.05 and 0.90 for α = 0.1. This also shows the
performance improvement of any classification model when used with
underlying conformal inference. A detailed result is shared on our
GitHub repository.

C. Conformal Inference

We will emphasize and reiterate that ‘any’ classification algorithm
can be used along with the conformal inference framework, and in our
work we have adopted logistic regression with Mondrian conformal
predictors. The p-value is a measure of confidence in the predictions
made by the ML model. It is like a score that tells us how well
the model is doing when it makes predictions about new data. To
calculate the p-value, we compare the model’s prediction for a new

1https://github.com/cars-lab-repo/PALETTE/

TABLE I
CONFORMAL INFERENCE AND ASSOCIATED P-VALES FOR TRUST-HUB

CHIP-LEVEL TROJAN DATASET.

TF TI T-EV pTF pTI pT-EV y pred Conf
1 T F F 0.319 0 0.003 TF 0.997
2 T F F 0.243 0.002 0.006 TF 0.994
3 T T F 0.161 0.078 0.016 TF 0.992
4 T T T 0.114 0.053 0.119 T-EV 0.886
5 T F F 0.645 0.001 0.004 TF 0.996
6 F F T 0.653 0 0.971 T-EV 0.365
7 T F F 0.3 0 0.002 TF 0.998

TABLE II
CONFORMAL INFERENCE FOR GAINESIS DATASET.

circuit TI TF y-pred Conf
1 FALSE TRUE TF 0.891
2 FALSE TRUE TF 0.796
3 FALSE TRUE TF 0.996
4 FALSE TRUE TF 0.997

...
4596 FALSE TRUE TF 1
4597 FALSE TRUE TF 0.991
4598 TRUE FALSE TI 0.995
4599 FALSE TRUE TF 0.989
4600 FALSE TRUE TF 0.992

piece of data with its predictions for the data it was trained on based
on hypothesis testing. If the new data is very different from what
the model has seen before, the p-value will be small, and this can
be a sign that the model’s prediction for the new data might not be
as accurate. So, we need to be careful when interpreting predictions
from the model if the p-value is too small.

The results obtained after implementing conformal inference for
detecting evolving HTs are shown in Table I. Each row represents
the circuit and the truth value in columns TF, TI, and T-EV. In
addition, the p-values for each label are mentioned in the columns
pTF, pTI, and pT-EV. Finally, the detected Trojan is mentioned in
column y pred with α = 0.05. The column Conf represents the
confidence score of each detected label for each circuit, which is
obtained by 1− 2ndpmax. An application of conformal inference is
the improvement of detection quality for evolving HTs. For example,
in Table I, circuit 2 is detected as Trojan-Free because the p-values
of TI and T-EV are less than the value of α = 0.05. The circuit
4 and 6 are detected as infected with an evolved Trojan. In circuit
4, we see that p-values for TF, TI, and T-EV are greater than the
value of α, so all the labels are set as T (True), and the maximum
of the p-value is specified for the detected label. For example, with

Fig. 4. Effective coverage and average prediction set size for Trust-Hub chip-
level Trojan dataset.

Fig. 5. Distribution of scores on each five of the calibration fold for the Mondrian conformal predictor for GAINESIS dataset.

TABLE III
COMPARISON OF CONFORMAL PREDICTORS WITH CORRESPONDING

SIGNIFICANCE LEVEL ON TRUST-HUB CHIP-LEVEL TROJAN DATASET.

alpha mondrian raps naı̈ve top k
0.05 10 37 35 0
0.5 45 57 57 61
0.9 45 61 61 61

conformal inference, we can say that with 95% detection guarantee
(as α = 0.05 decided by the user), circuit 4 is detected as an evolving
Trojan with a confidence score of 0.886. This helps the end user have
granular-level reasoning for trustworthy and robust decision-making.

We also share the results for binary labels (TF, TI) on the
GAINESIS dataset in Table II. The method was validated on 4600
synthetic circuits with and without Trojans, and the corresponding
confidence score is shown in the column Conf.

Furthermore, we also explored variations of conformal predictors
as described in [50]. Table III shows that the Mondrian conformal
predictor is very strict on detecting the evolved hardware Trojans as
compared to the risk-adaptive prediction set raps, naive, and top k
methods with varying significance levels. The naive and top k first
get the model output of the true class, and naive makes the estimated
set prediction by getting quantiles from the score distribution, while
top k gets the quantiles from the distribution of the ordered positions
of the true label. The raps method first sorts the model output
in decreasing order to get cumulative output of the true class and
then uses it to obtain quantiles from cumulative score distributions.
Furthermore, with a very high coverage of 95% (α = 0.05), raps
and naive detect almost three times more Trojans as compared to
Mondrian, while the detection coverage becomes almost similar when
the coverage level is increased.

D. Performance Metrics

Unlike classification task which produces Receiver Operating Char-
acteristic (ROC) and Area Under Curve (AUC), conformal inference
produces effective coverage and efficiency, i.e., average prediction set
size, as performance metrics. The limitation of ROC and AUC is that
they can be impacted by an imbalanced dataset. In Fig. 4 we show the
two different performance metrics for Mondrian conformal predictors.
The coverage score measures the proportion of instances in which the
true label falls within the predicted region. It is typically measured
at different confidence levels. Higher coverage indicates a more
conservative prediction method. Now, since validity is guaranteed for
all conformal predictors, the key performance metric is efficiency, i.e.,
the size of the label sets, where smaller sets are more informative and

TABLE IV
PERFORMANCE METRICS OF CONFORMAL INFERENCE ON TRUST-HUB

CHIP-LEVEL TROJAN DATASET.

sig mean err avg c n correct mean T-EV
0.05 0.049 1.040 589 0.012
0.1 0.102 0.941 556 0.045
0.2 0.204 0.812 493 0.133
0.3 0.303 0.701 431 0.220
0.4 0.406 0.596 367 0.319
0.5 0.504 0.497 307 0.423
0.6 0.604 0.397 245 0.536
0.7 0.702 0.298 184 0.650
0.8 0.798 0.202 125 0.764
0.9 0.900 0.100 61 0.884

indicate higher efficiency. It is also a direct measure of how good the
conformal predictor is at rejecting class labels.

When evaluating conformal prediction methods, there are several
metrics that can be used to assess their performance. In Table IV we
show the various performance metrics associated with the detection
mechanism for significance levels ranging from 0.05 to 0.9. For
example, avg c indicates the average number of class labels in the
prediction sets; this metrics serves as a straightforward indicator of
the conformal predictor’s ability to accurately discard class labels.

The significance level is like a threshold that controls how often the
ML model makes incorrect predictions. If we set a higher significance
level, the model will make fewer errors, but its predictions may be
less precise. So, we need to find the right balance to get the best
results from our model.

Furthermore, we also show the performance metrics for the
GAINESIS dataset in Fig. 5. We examine the conforming score
(expected label) distribution on each of the five calibration folds for
the Mondrian conformal predictor and observe that there is no major
difference in the conforming score for each calibration split.

E. Risk-Aware Ranking

We leverage confidence score from the conformal inference as a
ranking mechanism for evolved HTs. For the below given circuits 12,
13, and 14 from the Trust-Hub dataset, we calculated their confidence
score (C) with α = 0.05.

α0.05(circuit 12) = {T − EV }C=0.88

α0.05(circuit 13) = {T − EV }C=0.81

α0.05(circuit 14) = {T − EV }C=0.61

Confidence in a model’s prediction is determined by its p-value which
indicates the probability of obtaining a similar outcome under the

Fig. 6. Calibrated explanation for rejecting a decision.

TABLE V
ADOPTION OF CONFIDENCE FOR RISK-AWARE RANKING ON TRUST-HUB

CHIP-LEVEL TROJAN DATASET.

confidence credibility y pred
1 0.997 0.319 TF
2 0.994 0.242 TF
3 0.922 0.162 TF
4 0.886 0.119 T-EV
5 1 0.645 TF
6 0.999 0.97 T-EV
7 0.998 0.301 TF

NULL hypothesis. Higher confidence implies greater accuracy. This
metric is defined as:

Confidence(x) = sup{1− ϵ : |Γϵ(x)| ≤ 1}

By ranking the predictions, conformal prediction can offer a more
informative way to assess the reliability of individual predictions. The
ranked list allows decision-makers to set thresholds or confidence
levels for accepting or rejecting predictions based on their position
in the ranking.

This provides a flexible tool for controlling the trade-off between
accuracy and reliability in different applications. In Table V we show
the confidence and credibility of the detected labels. The credibility
is obtained by considering the maximum p-value of the given set
prediction. Credibility quantifies the quality of the new data points.

F. Calibrated Explanations for Reject

When the model is not able to detect evolving HT, the model
simply says, “I don’t know” by giving a NULL set as the output. In a
risk-sensitive domain, a model with no output is better than a decision
that is not confident. Our framework also provides the reason for
rejecting the decision with a calibrated explanation, as shown in Fig.
6, which is different from traditional explainable methods. If we apply
a significance level of 0.5 to the given circuit, none of the p-values for
TF (0.45), TI (0.32), and T-EV (0.23) exceed the significance level.
As a result, we reject the decision. The explanation for this rejection
is based on Local Interpretable Model-agnostic Explanations (LIME)
[51]. However, the differentiating factor as compared to SHAP (which
disregards causality and is affected by human bias) is that before
providing any explanation for the rejection, we ensure that it is
calibrated. The approach begins by creating modified versions of
the original instance called perturbed instances, where small random
changes are introduced. Conformal prediction is then utilized to create
prediction regions that estimate the reliability or confidence level of
the explanations, and LIME is then used again on these perturbed
instances to generate explanations for each of them. The prediction
regions obtained through conformal prediction act as a calibration

mechanism, guaranteeing that the explanations accurately reflect their
level of reliability.

VI. CONCLUSION

In this paper, we addressed one of the most neglected evaluation
metrics to quantify the predictions made by ML methods in the
context of detecting hardware Trojans. First, we designed a method
to generate a quality evolving dataset using conformalized genera-
tive adversarial network. Then, we proposed an algorithm-agnostic
framework called PALETTE to detect evolving hardware Trojans
with guaranteed coverage. We also implemented a novel method for
rejecting a decision by proving a calibrated explanation. PALETTE
is efficient in detecting hardware Trojans with an assigned uncertainty
quantification for each detection.

Our results highlighted opportunities for researchers in related
hardware security domains such as logic locking [52]–[55] to rethink
the application of ML-based solutions and re-construct the metrics to
evaluate their methods. We do believe that there is no silver bullet
for a zero-day attack, but a robust method to minimize the chances of
an attack and a proactive approach to defending the attack do help.

ACKNOWLEDGMENT

This work is supported by the National Science Foundation under
Award No. 2245247.

REFERENCES

[1] J. Francq and F. Frick, “Introduction to hardware trojan detection meth-
ods,” in 2015 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE). IEEE, 2015, pp. 770–775.

[2] A. Gbade-Alabi, D. Keezer, V. Mooney, A. Y. Poschmann, M. Stöttinger,
and K. Divekar, “A signature based architecture for trojan detection,” in
Proceedings of the 9th Workshop on Embedded Systems Security, 2014,
pp. 1–10.

[3] F. Ceschin, “Spotting the differences: Quirks of machine learning (in)
security.” Santa Clara, CA: USENIX Association, Jan. 2023.

[4] E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi, C. Wressnegger,
L. Cavallaro, and K. Rieck, “Dos and don’ts of machine learning in com-
puter security,” in 31st USENIX Security Symposium (USENIX Security
22), USENIX Association, Boston, MA, 2022.

[5] W. Liu, C.-H. Chang, X. Wang, C. Liu, J. M. Fung, M. Ebrahimabadi,
N. Karimi, X. Meng, and K. Basu, “Two sides of the same coin: Boons
and banes of machine learning in hardware security,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 11, no. 2, pp.
228–251, 2021.

[6] G. Shafer and V. Vovk, “A tutorial on conformal prediction.” Journal of
Machine Learning Research, vol. 9, no. 3, 2008.

[7] R. J. Tibshirani, R. Foygel Barber, E. Candes, and A. Ramdas, “Conformal
prediction under covariate shift,” Advances in neural information process-
ing systems, vol. 32, 2019.

[8] Z. Huang, Q. Wang, Y. Chen, and X. Jiang, “A survey on machine learning
against hardware trojan attacks: Recent advances and challenges,” IEEE
Access, vol. 8, pp. 10 796–10 826, 2020.

[9] K. I. Gubbi, B. S. Latibari, A. Srikanth, T. Sheaves, S. A. Beheshti-Shirazi,
S. M. Pd, S. Rafatirad, A. Sasan, H. Homayoun, and S. Salehi, “Hardware
trojan detection using machine learning: A tutorial,” ACM Transactions on
Embedded Computing Systems, 2023.

[10] T. Ç. Köylü, C. R. W. Reinbrecht, A. Gebregiorgis, S. Hamdioui, and
M. Taouil, “A survey on machine learning in hardware security,” ACM
Journal on Emerging Technologies in Computing Systems, 2023.

[11] S. Kundu, X. Meng, and K. Basu, “Application of machine learning in
hardware trojan detection,” in 2021 22nd International Symposium on
Quality Electronic Design (ISQED). IEEE, 2021, pp. 414–419.

[12] U. J. Botero, R. Wilson, H. Lu, M. T. Rahman, M. A. Mallaiyan, F. Ganji,
N. Asadizanjani, M. M. Tehranipoor, D. L. Woodard, and D. Forte,
“Hardware trust and assurance through reverse engineering: A tutorial and
outlook from image analysis and machine learning perspectives,” ACM
Journal on Emerging Technologies in Computing Systems (JETC), vol. 17,
no. 4, pp. 1–53, 2021.

[13] M. Ashok, M. J. Turner, R. L. Walsworth, E. V. Levine, and A. P. Chan-
drakasan, “Hardware trojan detection using unsupervised deep learning on
quantum diamond microscope magnetic field images,” ACM Journal on
Emerging Technologies in Computing Systems (JETC), vol. 18, no. 4, pp.
1–25, 2022.

[14] D. C. Bowman and J. M. Emmert, “Hardware trojan detection through
multimodal image processing and analysis,” in 2022 IEEE International
Symposium on Smart Electronic Systems (iSES), 2022, pp. 712–717.

[15] C. Bao, D. Forte, and A. Srivastava, “On application of one-class svm to
reverse engineering-based hardware trojan detection,” in Fifteenth Interna-
tional Symposium on Quality Electronic Design. IEEE, 2014, pp. 47–54.

[16] K. Hasegawa, M. Yanagisawa, and N. Togawa, “A hardware-trojan clas-
sification method using machine learning at gate-level netlists based on
trojan features,” IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. 100, no. 7, pp. 1427–1438,
2017.

[17] C. Dong, J. Chen, W. Guo, and J. Zou, “A machine-learning-based
hardware-trojan detection approach for chips in the internet of things,”
International Journal of Distributed Sensor Networks, vol. 15, no. 12, p.
1550147719888098, 2019.

[18] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Trojan-feature extraction
at gate-level netlists and its application to hardware-trojan detection us-
ing random forest classifier,” in 2017 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2017, pp. 1–4.

[19] V. Gohil, H. Guo, S. Patnaik, and J. Rajendran, “Attrition: Attacking
static hardware trojan detection techniques using reinforcement learning,”
in Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, 2022, pp. 1275–1289.

[20] H. Chen, X. Zhang, K. Huang, and F. Koushanfar, “Adatest: Reinforcement
learning and adaptive sampling for on-chip hardware trojan detection,”
ACM Transactions on Embedded Computing Systems, vol. 22, no. 2, pp.
1–23, 2023.

[21] L. Alrahis, S. Patnaik, M. Shafique, and O. Sinanoglu, “Embracing
graph neural networks for hardware security,” in Proceedings of the 41st
IEEE/ACM International Conference on Computer-Aided Design, 2022,
pp. 1–9.

[22] A. Hepp, J. Baehr, and G. Sigl, “Golden model-free hardware trojan
detection by classification of netlist module graphs,” in 2022 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2022, pp. 1317–1322.

[23] T. Han, Y. Wang, and P. Liu, “Hardware trojans detection at register
transfer level based on machine learning,” in 2019 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2019, pp. 1–5.

[24] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and
G. Wang, “Cade: Detecting and explaining concept drift samples for
security applications.” in USENIX security symposium, 2021, pp. 2327–
2344.

[25] Z. Pan and P. Mishra, “Hardware trojan detection using shapley ensemble
boosting,” in Proceedings of the 28th Asia and South Pacific Design
Automation Conference, 2023, pp. 496–503.

[26] E. Downing, Y. Mirsky, K. Park, and W. Lee, “Deepreflect: Discovering
malicious functionality through binary reconstruction.” in USENIX Secu-
rity Symposium, 2021, pp. 3469–3486.

[27] G. Severi, J. Meyer, S. E. Coull, and A. Oprea, “Explanation-guided back-
door poisoning attacks against malware classifiers.” in USENIX Security
Symposium, 2021, pp. 1487–1504.

[28] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon,
B. Lakshminarayanan, and J. Snoek, “Can you trust your model’s uncer-
tainty? evaluating predictive uncertainty under dataset shift,” Advances in
neural information processing systems, vol. 32, 2019.

[29] T. Löfström, H. Boström, H. Linusson, and U. Johansson, “Bias reduc-
tion through conditional conformal prediction,” Intelligent Data Analysis,
vol. 19, no. 6, pp. 1355–1375, 2015.

[30] H. Boström, U. Johansson, and T. Löfström, “Mondrian conformal predic-
tive distributions,” in Conformal and Probabilistic Prediction and Appli-
cations. PMLR, 2021, pp. 24–38.

[31] A. N. Angelopoulos and S. Bates, “Conformal prediction:: A gentle
introduction,” Foundations and Trends® in Machine Learning, vol. 16,
no. 4, pp. 494–591, 2023.

[32] K. Laland, T. Uller, M. Feldman, K. Sterelny, G. B. Müller, A. Moczek,
E. Jablonka, J. Odling-Smee, G. A. Wray, H. E. Hoekstra et al., “Does
evolutionary theory need a rethink?” Nature, vol. 514, no. 7521, pp. 161–
164, 2014.

[33] B. Liu and R. Vishwakarma, “Anomaly aware log retrieval from disk array
enclosures (daes),” Nov. 29 2022, uS Patent 11,513,931.

[34] H. Wilde, V. Knight, and J. Gillard, “Evolutionary dataset optimisa-
tion: learning algorithm quality through evolution,” Applied Intelligence,
vol. 50, pp. 1172–1191, 2020.

[35] E. Catto, “Box2d,” Available fro m: http://www. box2d. org, 2010.
[36] J. H. Holland, “Genetic algorithms,” Scientific american, vol. 267, no. 1,

pp. 66–73, 1992.
[37] D. Sisejkovic, F. Merchant, L. M. Reimann, H. Srivastava, A. Hallawa,

and R. Leupers, “Challenging the security of logic locking schemes in
the era of deep learning: A neuroevolutionary approach,” ACM Journal
on Emerging Technologies in Computing Systems (JETC), vol. 17, no. 3,
pp. 1–26, 2021.

[38] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

[39] U. Ojha, Y. Li, and Y. J. Lee, “Towards universal fake image detectors that
generalize across generative models,” arXiv preprint arXiv:2302.10174,
2023.

[40] M. Kang, J.-Y. Zhu, R. Zhang, J. Park, E. Shechtman, S. Paris, and
T. Park, “Scaling up gans for text-to-image synthesis,” arXiv preprint
arXiv:2303.05511, 2023.

[41] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni, “Mod-
eling tabular data using conditional gan,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[42] R. Yonetani, T. Takahashi, A. Hashimoto, and Y. Ushiku, “Decentralized
learning of generative adversarial networks from non-iid data,” arXiv
preprint arXiv:1905.09684, 2019.

[43] N. Etemadi, “An elementary proof of the strong law of large numbers,”
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, vol. 55,
no. 1, pp. 119–122, 1981.

[44] R. T. Smythe, “Strong laws of large numbers for r-dimensional arrays of
random variables,” The Annals of Probability, pp. 164–170, 1973.

[45] N. Vashistha, H. Lu, Q. Shi, M. T. Rahman, H. Shen, D. L. Woodard,
N. Asadizanjani, and M. Tehranipoor, “Trojan scanner: Detecting hardware
trojans with rapid sem imaging combined with image processing and ma-
chine learning,” in ISTFA 2018: Proceedings from the 44th International
Symposium for Testing and Failure Analysis. ASM International, 2018,
p. 256.

[46] Q. Shi, N. Vashistha, H. Lu, H. Shen, B. Tehranipoor, D. L. Woodard, and
N. Asadizanjani, “Golden gates: A new hybrid approach for rapid hardware
trojan detection using testing and imaging,” in 2019 IEEE international
symposium on hardware oriented security and trust (HOST). IEEE, 2019,
pp. 61–71.

[47] H. Salmani, M. Tehranipoor, S. Sutikno, and F. Wijitrisnanto, “Trust-hub
trojan benchmark for hardware trojan detection model creation using
machine learning,” 2022. [Online]. Available: https://dx.doi.org/10.21227/
px6s-sm21

[48] K. G. Liakos, G. K. Georgakilas, F. C. Plessas, and P. Kitsos, “Gainesis:
Generative artificial intelligence netlists synthesis,” Electronics, vol. 11,
no. 2, p. 245, 2022.

[49] S. Sankaranarayanan, A. N. Angelopoulos, S. Bates, Y. Romano, and
P. Isola, “Semantic uncertainty intervals for disentangled latent spaces.”

[50] S. Bates, A. Angelopoulos, L. Lei, J. Malik, and M. Jordan, “Distribution-
free, risk-controlling prediction sets,” Journal of the ACM (JACM), vol. 68,
no. 6, pp. 1–34, 2021.

[51] J. Dieber and S. Kirrane, “Why model why? assessing the strengths and
limitations of lime,” arXiv preprint arXiv:2012.00093, 2020.

[52] A. Rezaei, R. Afsharmazayejani, and J. Maynard, “Evaluating the security
of efpga-based redaction algorithms,” in IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), 2022.

[53] A. Rezaei, A. Hedayatipour, H. Sayadi, M. Aliasgari, and H. Zhou, “Global
attack and remedy on ic-specific logic encryption,” in IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), 2022, pp.
145–148.

[54] J. Maynard and A. Rezaei, “Dk lock: Dual key logic locking against oracle-
guided attacks,” in International Symposium on Quality Electronic Design
(ISQED), 2023, pp. 1–7.

[55] Y. Aghamohammadi and A. Rezaei, “Cola: Convolutional neural network
model for secure low overhead logic locking assignment,” in Proceedings
of the Great Lakes Symposium on VLSI (GLSVLSI), 2023, p. 339–344.

