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Abstract—Physical Unclonable Functions (PUFs) leverage man-
ufacturing process imperfections that cause propagation delay
discrepancies for the signals traveling along these paths. While
PUFs can be used for device authentication and chip-specific
key generation, strong PUFs have been shown to be vulnerable
to machine learning modeling attacks. Although there is an
impression that combinational circuits must be designed without
any loops, cyclic combinational circuits have been shown to
increase design security against hardware intellectual property
theft. In this paper, we introduce feedback signals into traditional
delay-based PUF designs such as arbiter PUF, ring oscillator PUF,
and butterfly PUF to give them a wider range of possible output
behaviors and thus an edge against modeling attacks. Based on
our analysis, cyclic PUFs produce responses that can be binary,
steady-state, oscillating, or pseudo-random under fixed challenges.
The proposed cyclic PUFs are implemented in field programmable
gate arrays, and their power and area overhead, in addition to
functional metrics, are reported compared with their traditional
counterparts. The security gain of the proposed cyclic PUFs is
also shown against state-of-the-art attacks.

Index Terms—Hardware Security Primitives; Physical Unclon-
able Function; Cyclic Combinational Circuit; Modeling Attack

I. INTRODUCTION

With an ever-increasing amount of sensitive data stored in
electronic devices and the growing involvement of third-party
manufacturing foundries, design automation companies, and
testing facilities, hardware security is becoming an increasingly
important issue in today’s digital world. Physical Unclonable
Functions (PUFs) [1] are hardware security primitives that ide-
ally generate a unique device-dependent response to a particular
input stimulus, such as a challenge or an interrogation signal.
These responses are based on the inherent and uncontrollable
physical variations that occur during the manufacturing process
of Integrated Circuits (ICs). A weak PUF supports a small
number of Challenge-Response Pairs (CRPs) with a polynomial
function of the PUF size, while a strong PUF scales in such a
way that it can support a very large number of CRPs with ex-
ponential growth with respect to the PUF size. In recent years,
the use of PUFs in hardware security problems has gained
popularity due to their ability to provide a unique identity
for every chip [2], generate unpredictable hardware-based keys
[3], [4], and facilitate privacy-friendly authentication protocols
[5]. PUFs have been extensively studied in academia and have
found their way into commercial applications [6]–[8], making
them a promising solution for hardware security problems such
as watermarking [9] and logic locking [10]–[13].

One of the main challenges in implementing PUFs is their
vulnerability to modeling attacks [14]–[17]. In such attacks,
adversaries usually use Machine Learning (ML) techniques to
model the PUF based on a limited number of observed CRPs
and predict its responses to new challenges, which poses a
significant threat to the security of PUF-based systems. While
researchers have developed hard-to-model PUF designs [18]–
[21], their complexity imposes a high design overhead and has
a negative effect on PUF functional metrics such as uniqueness,
uniformity, and reliability.

Contrary to conventional wisdom, which believes that com-
binational circuits must be free of feedback loops, cyclic
combinational circuits have been proposed for high-speed and
low-power designs [22], [23], and their application in logic
locking has been studied [24], [25] to improve security against
oracle-guided attacks [26]. Inspired by these seminal works, in
this paper, we propose CycPUF, a Cyclic Physical Unclonable
Function framework, to safeguard against modeling attacks and
enhance the PUF functional metrics with reasonable overhead.
Our contributions are as follows:
• Proposing three delay-based CycPUFs and thoroughly

analyzing their output behavior;
• Comparing CycPUFs functional metrics and overhead

with their acyclic counterparts;
• Showcasing the security gain of CycPUFs against ML-

based and hybrid modeling attacks.

A. Related Works

There are various types of traditional delay-based PUFs, such
as Arbiter PUF (APUF) [27], Ring Oscillator PUF (ROPUF)
[28], and Butterfly PUF (BPUF) [29]. Each type of PUF has its
own unique properties and strengths, and the selection of the
PUF category depends on the intended application and security
requirements. For instance, ROPUFs rely on the frequency
variations of multiple oscillators, while APUFs rely on the
propagation delays of identical multiplexers [30]. A unified
PUF that generalizes various existing PUFs has also been
modeled [31].

One of the main attacks targeting the unpredictability of
strong PUFs is the ML-based modeling attack, which has been
shown to require only a linear or log-linear number of known
CRPs to achieve high prediction accuracy on unknown CRPs
[32]. An attacker may use the constructed PUF model to attack
the same PUF instance they collected the CRPs from, or they



Fig. 1: CycPUF framework

may also use a sophisticated enough modeling attack to attack
multiple instances of a PUF design [33]. It is even demon-
strated that it is feasible to model not just delay-based PUFs but
memory-based memristor PUFs [34] with high prediction rates
[35]. We have witnessed significant advancements in defense
strategies aimed at bolstering the resilience of PUFs against
ML-based attacks. However, as time progresses, we expect ML
to become more and more sophisticated, meaning that down
the line, these PUF designs may also fall victim to modeling
susceptibility.

A deception authentication protocol has been proposed by
deceiving the adversary to use a training set dominated by
invalid responses [18]. However, finding such a set for each
instance of the device is a tedious task for the designer. While
Interpose PUF (IPUF) [21] has been proposed as an anti-
modeling primitive replacement for APUF, it was successfully
modeled using a divide-and-conquer-based attack methodology
[36]. In addition, structural unpredictability is exploited to
reconfigure a conventional PUF into a noisy PUF and make
it inherently unreliable and hence hard to model [19]. The
downside of such an approach is the need to look for reliable
CRPs or embed an Error Correction Code (ECC) module
to make some pre-selected CRPs reliable. Linear-Feedback
Shift Registers (LFSR) have been utilized for the purpose of
obfuscating the CRPs of the proposed PUFs [37], [38], as well
as using auxiliary PUFs to accomplish a similar goal [20].
Further, to hide the direct relationship between CRPs, a dual-
mode PUF is introduced using a feedback structure to perform
bitwise XOR of the challenge and its response and use the result
as input to challenge the PUF again [39]. The method, however,
seems to double the size of the original PUF.

B. Threat Model

We assume that the attacker has physical access to the
IC and can apply a polynomial number of challenges to the
PUF module to collect the corresponding responses. With the
measured CRPs of the PUF in hand, the adversary tries to
build a numerical model of the PUF using ML algorithms.

In addition, the adversary may leverage physical access and
knowledge of the PUF design to carefully inject faults to alter
the PUF’s functionality. The introduced faults, such as bit flips
or stuck-at faults, may cause the PUF to generate erroneous
responses that deviate from its anticipated behavior.

II. PRELIMINARIES

The critical functional metrics needed to assess the function-
ality of a PUF are discussed here [40]. The Hamming Distance
(HD) between two responses is defined as follows:

HD(R1, R2) =

n∑
i=1

(R1[i]⊕R2[i]) (1)

where R1 and R2 are two responses, and n is the number of
bits in the response vector.

In addition, the Hamming Weight (HW) of one response is
the sum of existing ‘1’s in the response vector, as follows:

HW (R) =

n∑
i=1

R[i] (2)

A. Uniqueness

Different PUF instances of the same design shall ideally
generate different responses under the same challenge. This
is what separates one PUF from another. Uniqueness is the
metric used to highlight the differences between different PUF
instances, which can be defined as the normalized inter-chip
HD as follows:

Uniqueness = ( 2
k(k−1)

∑k−1
i=1

∑k
j=i+1

HD(Ri,Rj)
n )× 100% (3)

in which for any pair of different PUF instances, PUFi and
PUFj , the responses produced by the involved PUFs are
denoted by Ri and Rj respectively, and the number of PUF
instances involved is given by the number k. The ideal
uniqueness a PUF design can achieve is 50%.



B. Reliability

Ideally, PUFs would be able to operate in non-ideal condi-
tions and still produce the same response for the same challenge
that the PUF gets fed. Reliability is a metric used to identify a
PUF’s ability to reproduce the same response under the same
challenge but under different operating conditions, such as
different temperatures, altitudes, and supply voltages. Here,
the intra-chip HD is used to measure reliability as follows:

Reliability = (1− 1

s

s∑
i=1

HD(R,R∗
i )

n
)× 100% (4)

where R is the n-bit reference response from a single PUF
operating in standard conditions, and R∗

i is the response
under the same challenge, collected under different operating
conditions, and s is the total number of samples collected from
varying the conditions of operation. A truly reliable PUF will
achieve a reliability of 100%. This means that under varying
operating conditions, the PUF can produce the same response
under the same challenge.

C. Uniformity

The uniformity of a PUF can be measured as the normalized
HW of all the responses produced by the PUF. The formula
for uniformity is given as follows:

Uniformity = (
1

m

m∑
i=1

HW (Ri)

n
)× 100% (5)

in which m is the number of responses produced by the PUF.
The ideal uniformity a PUF design can achieve is 50%.

III. CYCLIC PUF

The proposed CycPUF framework is depicted in Fig. 1.
1 While combinational feedback loops are generally not

preferred when designing circuits, modifying acyclic PUF de-
signs with feedback signals lends itself to interesting behaviors,
which we shall refer to as response modes, that can prove
useful in hardware security. The main idea behind constructing
a CycPUF is to take a few bits from the response vector of
a delay-based PUF and route them back into the challenge
vector. Specifically, we choose three traditional PUF designs
(i.e., APUF, ROPUF, and BPUF), select some random response
bits and then XOR each with a random challenge bit, and route
the output of the XOR gates back into the challenge input of
PUFs. This allows us to hold the challenge vector constant
while the response vector remains free to change at will. In
this case, the users can choose between different PUF categories
(i.e., APUF, ROPUF, and BPUF), PUF form (i.e., acyclic or
cyclic), and PUF type (i.e., weak or strong) based on their
needs.

2 Based on our analysis, the output of CycPUF can behave
in four different response modes under a constant challenge.

1) Binary: In the binary response mode (shown in Fig. 2)
the CycPUF behaves the same as its acyclic counterpart. Under
a fixed challenge, the CycPUF will generate a fixed response
depending on what delay variations appear in their symmetric
paths for the duration that this challenge is applied.

Resp = R

Fig. 2: CycPUF binary response mode

2) Steady-State: In the steady-state response mode (shown
in Fig. 3), we see that inputting a fixed challenge will eventu-
ally produce a fixed response for the duration that the challenge
is held constant. However, the fixed response may take some
time to stabilize. This is to say that for some time, the CycPUF,
while in this response mode, may produce different outputs
before finally settling on a fixed response. This cool-down
period distinguishes this behavior from a PUF’s usual acyclic
behavior since, in this scenario, the CycPUF response needs no
additional helper code or hardware to maintain its steady-state
response mode.

Resp = R1 Resp = R2 ... Resp = Rn

Fig. 3: CycPUF steady-state response mode

3) Oscillating: Oscillating outputs are also possible when
using CycPUF (shown in Fig. 4). This oscillating response
output can have varying periods for its output. It may take
some intermediate responses before going back to a previously
seen response. Following the same trend as the steady-state
response mode’s situation, we may also see a cool-down period
before any oscillating outputs can be observed. When a fixed
challenge is applied, the CycPUF may begin to produce its
oscillating output after some time.

Resp = R1 Resp = R2 Resp = Rn...

Fig. 4: CycPUF oscillating response mode

4) Pseudo-Random: The pseudo-random response mode
is the one where applying a fixed challenge to the CycPUF
produces response vectors with no discernible pattern (shown
in Fig. 5). The steady-state and oscillating response modes may
also produce seemingly random response vectors before finally
collapsing to their appropriate behavior. However, the pseudo-
random response mode does not follow a specific pattern, and
it continuously generates separate responses for the duration of
time that the challenge is held constant.



Resp = R1 Resp = R2 Resp = R3 ...

Fig. 5: CycPUF pseudo-random response mode

By cascading the delays of a PUF, the PUF is allowed to
take on new possibilities that were otherwise thought to be
unreliable. This gives rise to the term Challenge-Response
Modes (CRMs), where instead of pairing up a single challenge
with a single response, we now match a single challenge to the
set of response vectors that the constant challenge may produce,
where they will follow the behavior outlined in the given mode.
Pairing a challenge in a CRM with each response vector in the
set creates CRP-equivalents, where it should be noted that the
challenges across these CRPs will overlap with each other.

Take the steady-state response mode, for example. In this
CRM, we see that the output produces a response pattern
to a fixed challenge rather than a single response vector.
For modeling attacks that expect an acyclic, reliable response
from a PUF, the introduction of the steady-state as a CRM
would be able to poison the data that a ML algorithm can
gather and render the attack unsuccessful. Take the oscillating
response mode as another example. Since specific patterns
will be repeated, this CRM can be a potential case for device
authentication in a way that checking only a single challenge
and storing the sequences of responses allows us to validate the
authenticity of an IC later on. Last but not least, the pseudo-
random CRM can be utilized to generate pseudo-random IC-
specific keys by checking only one challenge vector.

3 After designing and verifying acyclic and cyclic PUFs,
we apply a ML-based model-building attack [15] to test the
security of the traditional PUFs and CycPUFs. While the
attack is primarily designed for APUFs, it can be easily
extended to other delay-based PUFs and, in our case, with some
modification, to CycPUFs since the training set is based on a
polynomial number of observed CRPs. In addition, we mimic
the behavior of the fault attack on PUFs [41] and insert stuck-
at and bit-flip faults into the PUFs, create a faulty dataset, and
run a hybrid modeling attack.

4 Finally, we evaluate the proposed CycPUF framework
by reporting the accuracy of the modeling attack and then
emulating the PUFs’ behavior on FPGA boards. It helps us
practically measure the power and area overheads as well as
extract the mentioned functional metrics in Section II.

IV. EXPERIMENTAL RESULTS

We wrote a Python script to generate cyclic APUF, ROPUF,
and BPUF in Verilog format based on the user-input challenge
and response size and the number of feedback signals. Then,
we created different CycPUFs and validated their Register
Transfer Level (RTL) and post-implementation behavior via
testbenches. After that, we evaluated the overhead, security,
and functional metrics for the created CycPUFs and compared

TABLE I: Modeling attack results

PUF Design Challenge
Size

# of Training
CRPs

Model
Accuracy

APUF 64 500,000 99.38%
CycAPUF 64 703,340 59.49%

Faulty CycAPUF 64 500,000 76.27%
ROPUF 64 500,000 78.00%

CycROPUF 64 1,048,576 48.74%
Faulty CycROPUF 64 642,603 50.02%

BPUF 64 500,000 83.32%
CycBPUF 64 938,420 54.76%

Faulty CycBPUF 64 582,645 61.44%

them with their acyclic counterparts. For running simulations,
we used the Xilinx Vivado HL WebPack tool version 16.4 and
implemented the design on the Nexys A7 FPGA board.

A. Security Evaluation

For security evaluation, we generated different strong PUFs
with 64-bit challenge vectors and single-bit responses. This
was done for compatibility between the PUF designs and the
ML-based modeling attack used [15]. Each CycPUF design
had a different number of feedback paths: 4 for the CycAPUF,
16 for the CycROPUF, and 12 for the CycBPUF. The CRP set
was divided into two parts: the training set consisted of 80%
of the total CRPs, while the test set consisted of the remaining
20%. We also ran a fault-injection modeling attack [41] by
injecting a mix of stuck-at-0, stuck-at-1, and bit flip faults into
the CycPUF designs and rerunning the ML-based modeling
attack on the faulty CycPUFs. We injected 2 faults into the
CycAPUF, 11 into the CycROPUF, and 7 into the CycBPUF.
For the number of training CRPs, the acyclic PUFs all have
500,000, while the CycPUFs and faulty CycPUFs may possess
a higher number of CRP-equivalents since, due to the cyclic
behavior of the CycPUFs, they may generate multiple responses
despite the challenge vectors being held constant.

The attack results are shown in Table I. Please note that the
higher the model accuracy, the more successful the attack is
at modeling the PUF. Comparing the modeling accuracy of
the acyclic PUFs with the CycPUFs, we see that there are
clear improvements in resistance against modeling attacks by
CycPUFs. The CycAPUF and APUF had the most impressive
discrepancies between each other, producing a difference in
modeling accuracy of 40%. The CycROPUF and ROPUF had
a model accuracy difference of 30%, while the CycBPUF and
BPUF ended with a model accuracy difference of 28.5%. While
injecting faults and running a hybrid attack can improve the
modeling accuracy of the ML-based attack on CycPUFs, they
still show better resistance compared with non-faulty acyclic
ones.

B. Overhead Measurement

We generated weak cyclic and acyclic PUFs with 4-bit
challenge and 4-bit response sizes and implemented them on
the Nexys A7 FPGA board. The post-implementation overhead
results are shown in Fig. 6.

For area overhead, we calculated the number of Look-Up
Tables (LUTs) and Flip-Flops (FFs) utilized in the FPGA for
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Fig. 6: Overhead analysis of CycPUFs and acyclic PUFs with 4-bit challenge and 4-bit response sizes (a) Number of FFs (b)
Number of LUTs (c) Total power consumption

each PUF shown in Fig. 6a and Fig. 6b. It can be seen that
CycAPUF exhibits significantly higher hardware complexity,
with an approximate 3x increase in the number of LUTs and
a 10% increase in the number of FFs compared to APUF.
CycROPUF in contrast, approximately shows a 2% increase
in LUTs and a 12.5% increase in FFs compared to ROPUF.
CycBPUF maintains a relatively modest hardware overhead
with an 8.3% increase in LUTs and no increase in FFs.
In addition, CycPUFs tend to exhibit slightly higher power
consumption compared to acyclic PUFs. As can be seen in
Fig. 6c , the power consumption increase is 26%, 6.5% and
2% for CycAPUF, CycROPUF, and CycBPUF compared with
their acyclic counterparts. Further, under the same challenge
and response sizes, BPUF and CycBPUF generally consume
less power than the others. The selection of a PUF design
should carefully consider hardware overhead and power con-
sumption trade-offs in relation to the specific constraints and
requirements of the intended application.

C. Functional Metrics Analysis

Referring back to CycPUFs output behavior of Figs. 3, 4,
and 5 in Section III, trying to apply the outlined functional
metrics of Formulas 3, 4, and 5 in Section II would not be
immediately possible since under a fix challenge, there may
be a set of responses rather than one response for CycPUFs.
Instead, we shall define a modification to these metrics so
that we are able to compare the proposed CycPUFs to their
acyclic counterparts in a meaningful way. We know that under
a constant challenge, any response bit in the response vector
can be at a logic ‘1’ or a logic ‘0’. Averaging the number of
cycles for which each bit is high or low allows us to apply the
functional metrics to get an insight into how the CycPUFs will
perform.

Let c be the number of clock cycles that a challenge is
applied for, Ri : i ∈ {1, 2, ..., c} be a response vector among
the set of response vectors that appear during that time, and
rij ∈ Ri : j ∈ {1, 2, ..., n} be a response bit in response vector
Ri. Then, the Average Bit Value (ABV ) can be defined as
follows:

ABV (j) =
1

c

c∑
i=1

rij (6)

TABLE II: PUF functional metrics results

PUF Design Uniqueness Uniformity Reliability
APUF 7.55% 55.42% 99.77%

CycAPUF 47.10% 47.30% 98.34%
ROPUF 44.26% 53.81% 99.05%

CycROPUF 50.68% 52.12% 95.18%
BPUF 11.48% 55.04% 97.45%

CycBPUF 53.05% 46.67% 98.62%

If the resulting bit is greater than or equal to 0.5, then we say
that on average we will observe a logic ‘1’ from the output.
Likewise, if the resulting bit is less than 0.5, we will observe
a logic ‘0’. From here, we can apply ABV to the three
previously defined PUF metrics in Section II.

The PUF functional metrics were computed and compared
for the acyclic and cyclic PUFs using the same setup as in
Section IV-B. The results are shown in Table II. As can be
seen, while CycPUFs in general outperform their acyclic coun-
terparts in uniqueness, they inherit the reasonable uniformity
and reliability of their acyclic versions. As other papers have
also previously highlighted [15], [40], [42], we confirmed that
the FPGA-based APUF implementation exhibits relatively poor
uniqueness. The intriguing fact is that CycAPUF fixes this issue
and raises uniqueness to practically perfect levels. Comparing
Tables I and II, it can be observed that improvement in the
uniqueness metric has a positive effect on improving resistance
against modeling attacks.

V. CONCLUSION

In this paper, we introduced CycPUF, a novel lightweight
PUF generation framework featuring strong resistance against
ML-based and hybrid modeling attacks while keeping up the
PUF functional metrics. CycPUFs use response feedback
loops to introduce the notion of challenge-response modes and
poison the data an adversary might use for model training,
introducing inaccurate correlations by erratically adjusting the
response vector in every cycle. This improves the functional
metrics of conventional PUF designs at the same time. The
attack results confirm that CycPUFs achieve a high level of
unpredictability against ML-based and hybrid modeling attacks.
Additionally, CycPUFs were able to attain near-ideal levels
of uniqueness, uniformity, and reliability. This work offers
researchers new perspectives on approaching hardware security



problems with cyclic combinational circuits and looking into
developing synthesis-friendly toolkits for them.
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