
LIPSTICK: Corruptibility-Aware and Explainable Graph
Neural Network-based Oracle-Less Attack on Logic Locking

Yeganeh Aghamohammadi
University of California, Santa Barbara

Santa Barbara, CA, USA
yeganeh@ucsb.edu

Amin Rezaei
California State University, Long Beach

Long Beach, CA, USA
amin.rezaei@csulb.edu

Abstract—In a zero-trust fabless paradigm, designers are
increasingly concerned about hardware-based attacks on the
semiconductor supply chain. Logic locking is a design-for-trust
method that adds extra key-controlled gates in the circuits to
prevent hardware intellectual property theft and overproduction.
While attackers have traditionally relied on an oracle to attack
logic-locked circuits, machine learning attacks have shown the
ability to retrieve the secret key even without access to an oracle.
In this paper, we first examine the limitations of state-of-the-art
machine learning attacks and argue that the use of key hamming
distance as the sole model-guiding structural metric is not always
useful. Then, we develop, train, and test a corruptibility-aware
graph neural network-based oracle-less attack on logic locking
that takes into consideration both the structure and the behavior
of the circuits. Our model is explainable in the sense that we
analyze what the machine learning model has interpreted in the
training process and how it can perform a successful attack. Chip
designers may find this information beneficial in securing their
designs while avoiding incremental fixes.

Index Terms—Logic Locking, Logic Encryption, Machine
Learning, Graph Neural Networks, Corruptibility, Explainability

I. INTRODUCTION

While outsource manufacturing is becoming the norm in the
semiconductor industry, it comes with increasing threats such
as hardware Intellectual Property (IP) theft and overproduc-
tion. Logic locking [1]–[14] (a.k.a. logic encryption or logic
obfuscation) is a technique to safeguard against these attacks
by adding extra key-controlled gates to the circuits.

One of the well-studied threat models is the Oracle-Guided
(OG) type of attacks [15]–[20], which assume having access
to an activated Integrated Circuit (IC) purchased off the shelf
in addition to a logic-locked netlist leaked from an untrusted
foundry. With the aid of a Boolean satisfiability (SAT) solver,
OG attacks try to prune out subsets of wrong keys by
checking a relatively small number of input patterns. While
the semiconductor industry must yet come up with protective
mechanisms against OG attacks, Oracle-Less (OL) attacks can
be detrimentally pervasive in the sense that they can leak
confidential information to attackers with limited resources.
Basically, we believe the weaker and yet more effective the
attacker model is, the more it can be ubiquitous and harmful
to hardware IP owners, and thus more critical to safeguard.

Recent advancements in Machine Learning (ML) have made
it possible to propose OL attacks to predict the correct key

of logic-locked circuits [21]–[26]. One of the suitable ML
models for logic circuits is Graph Neural Network (GNN)
which accepts inputs in the form of graphs and handles non-
Euclidean data. GNNs are capable of learning the connections
between diverse nodes and edges in a network [27] and
thus recognizing patterns in graph-structured data, such as
the schematic of a logic circuit. In state-of-the-art ML-based
OL attacks, the success rate is reported in terms of ML
model prediction accuracy, which is defined as minimizing
the hamming distance between the correct key and the key
reported by the attack.

A. Research Gap

The first observation is that ML-based OL attacks are
inherently approximate attacks because of the fact that they
try to find out an approximately correct key with respect
to some parameters, for example, by reducing the hamming
distance between the correct and reported keys. The second
finding is that current OL attacks do not consider the behavior
of the circuits under the reported key compared with the
intended functionality, necessitating the use of more meaning-
ful metrics, such as key precision, which takes into account
output corruptibility in addition to circuit structure. The third
observation is that a holistic security assessment of logic-
locking techniques is overlooked, yet explainable ML models
[28], which provide us with more reliable and trustworthy
predictions, need to be taken into consideration.

B. Contributions

Motivated by the mentioned research gaps, in this paper,
we are answering the following questions. First, why does the
accuracy of current GNN attacks differ drastically from the
reported key’s precision? Can integrating circuit functionality
metrics into GNN models result in the discovery of a more
relevant key? We are particularly interested in understanding
why hamming distance alone is insufficient to access the
effectiveness of GNN attacks and which parameter or set of
parameters are meaningful to use here. Second, what features
of the logic-locked circuits led the model to infer the reported
key? What is the degree of each feature’s influence? Answering
these questions will allow the designer to more securely and
confidently pick from many proposed logic locking methods
based on the design’s trade-offs and circuit characteristics.



Fig. 1: Counterexample for hamming distance as a
key precision metric

Fig. 2: Counterexample for the model prediction accuracy of state-of-
the-art GNN-based attacks

Specifically, we introduce a corruptibility-aware and ex-
plainable GNN-based OL attack to predict the correct key of
logic-locked ICs with a high key precision. To comprehend
data behavior and identify relationships between nodes, edges,
and node features, an explainable GNN would employ tech-
niques including rule extraction and explainable reasoning [29]
which, in the context of logic locking attacks, would benefit us
in figuring out crucial patterns and topologies that are effective
in choosing the key-bit values. The contributions of this paper
are threefold:
• Proposing a novel and effective GNN-based OL attack

on logic locking that takes the circuit’s functionality into
account in addition to its structure.

• Providing explainability of the inferred key by the pro-
posed attack that functions as a rule-of-thumb for design-
ers on how to safeguard their precious hardware designs.

• Showcasing the model’s prediction accuracy and key
precision on seen and unseen logic-locked benchmarks.

C. Background

In XOR-based logic locking [1], the key-bits can be matched
with a combination of random inverters and buffers. Then, key-
bit-controlled XOR gates are used to replace selected buffers
and inverters. If an XOR gate is hiding a buffer, the correct
key-bit is “0” while if it is hiding an inverter, the correct key-
bit is “1”. Additionally, MUX-based logic locking [2] chooses
random signals and replaces them with 2-1 MUXs whose inputs
are real signals and random dummy ones, and selectors are the
key-bits. As a result, the correct key must select the real signal
terminal and avoid the dummy one. Moreover, LUT-based
logic locking [3] is being implemented to IC prefabrication
to separate the inputs from the outputs so that a barrier stays
between every path from inputs to outputs. In this locking
method, the values stored in the Look Up Tables (LUTs) are
the key inputs.

While traditional logic locking methods have been attacked
by the OG SAT-based attack [15], post-SAT locking schemes
such as SAR-Lock [4] and Anti-SAT [5] have been proposed
to exponentially increase the number of input patterns that are
required to prune wrong keys by the SAT-based attack. As an
advanced post-SAT method, Bilateral Logic Encryption (BLE)
[6] uses obfuscation and integrated locking on a sensitive
component of a circuit. With this approach, the performance
overhead is lower than locking the entire circuit, but the
security impact, including structural complexity and logic
complexity, is transferred to the whole circuit.

Recent studies have shown promising results in the ad-
vancement of ML-based OL attacks. SnapShot [21] employs

neuro-evolutionary and deep learning methods and is the first
of its kind to directly predict the key value from a locked
synthesized gate-level netlist. In addition, SAIL [22] recovers
the design of a locked circuit in gate-level netlist and extracts
circuit features with the help of ML-based structural analysis.
While SAIL works mostly on the XOR-based locked circuits,
CutSAIL [23] derives missing k-cuts from the neighboring
logic and predicts the functionality of the missing parts of the
locked circuit. However, UNSAIL [7] inserts unsuited data
during the training stage of an ML attack, causing the ML
model to predict labels wrong.

More recently, OMLA [24] employs a GNN model to
predict the keys of a locked circuit by deriving a small
subgraph for each key gate. As a result, the key-bit value
of a subgraph is also considered its label. GNNUnlock [25],
utilizes GNN for node classification of circuits. The dataset
for GNNUnlock is multiple logic-locked circuits of a single
benchmark with different key sizes. The model uses adjacency
matrices corresponding to the circuit, in which edges and
nodes represent wires and gates, respectively. Finally, by map-
ping the key extraction process to a link prediction problem,
UNTANGLE [26] gathers concealed links in the lock blocks
and then learns the circuit structure, gate features, and link
features.

The inability of ML models to be interpreted is one of their
main drawbacks. This limitation can be overcome by creating
post-hoc explanation procedures for predictions, giving rise
to the explainability field [30]. For the purpose of producing
accurate similarity estimations and discriminative feature rep-
resentations, SGGNN [31] uses graph computation during both
the training and testing phases of deep networks. In addition,
PGExplainer [32] uses the trained GNN model as input and
offers coherent justifications for the model’s predictions. An
interesting fact about PGExplainer is that it can be used in an
inductive scenario to infer explanations of ambiguous nodes
without having to retrain the explanation model.

II. PRELIMINARY STUDY

We want to first make a distinction between two terms: One
is ML model prediction accuracy which resembles how well
a given prediction matches its actual value, and the other is
key precision which shows how closely a logic-locked circuit
under a given key operates to the original circuit.

Now, considering n, m, and p be the sizes of the input,
output, and key respectively, we define the original circuit as
F : {0, 1}n → {0, 1}m, and the locked circuit as G : {0, 1}p×
{0, 1}n → {0, 1}m in which there is a p-bit correct key K∗ =
(k∗0 , k

∗
1 , ..., k

∗
p−1) : {0, 1}

p such that F(X) = G(X,K∗). We



Fig. 3: LIPSTICK attack framework

also define the key error rate ER(K) for a given key K of
the locked circuit G, as the number of input patterns in which
F(X) ̸= G(X,K), divided by all the input patterns. It is clear
that for the correct key, ER(K∗) = 0. Thus, the ER value is
fundamentally dependent on the circuit’s functionality rather
than its topology.

Let Ka = (ka0 , k
a
1 , ..., k

a
p−1) be a p-bit reported key by the

attack, the Hamming Distance (HD) of Ka and K∗ can be
defined as the sum of the bitwise XOR of the two keys as
follows:

HD(Ka,K∗) =

p−1∑
i=0

kai ⊕ k∗i : {0, 1, ..., p} (1)

Proposition 1: The smaller the HD(Ka,K∗), the higher
the key precision of the locked circuit G under Ka.

Counterexample 1: Consider the locked circuit in Fig. 1
with a key size of p − 1. We increase the key size to p by
XORing one of the outputs with additional key-bit kp−1. In
this case, there is a key Ka in which just the key-bit kp−1

is incorrect and all the other key-bit values are the same as
K∗. In other words, while the HD of Ka is very low (i.e.,
HD(Ka,K∗) = 1), the locked circuit G under Ka outputs
differently than the original circuit F in 100% of the input
patterns (i.e., ER(Ka) = 1).

Hence, Proposition 1 is incorrect since it is possible to
design a locking method in which incorrect keys with a small
hamming distance from the correct key have high output
corruptibility. We can conclude that a key of the locked circuit
with a small hamming distance to the correct key does not
necessarily outperform a random key with a large hamming
distance. To address this issue, we believe that incorporating
ER in the training dataset can be useful.

Although, graph representation preserves the topology of the
circuit, using an undirected graph for netlist representation is
one of the shortcomings of GNNs because the inputs/outputs
neighborhood of the netlist will be indistinguishable. Tradi-
tional GNN-based attacks cannot effectively distinguish the

difference between XOR and XNOR key gates due to not taking
the circuit functionality into account.

Proposition 2: GNN-based attacks can report an approxi-
mate key Ka of the locked circuit G in which HD(Ka,K∗)
is very small.

Counterexample 2: We consider OMLA [24] as one of the
GNN-based attacks, in which its prediction accuracy has been
shown to be on average 80%. It means, for a reported key Ka,
it is expected to predict almost 80% of the key-bits correctly
(i.e., HD(Ka,K∗) = 0.2p). If we replace all the XOR gates
with XNOR in the benchmarks with XOR-based locking [1]
and push the inverters to the fanouts using bubble pushing, the
new correct key will be the complement of the previous one.
However, the attack prediction accuracy drops significantly to
an average of 56% (i.e., HD(Ka,K∗) = 0.44p) which is not
much better than reporting a random key. Fig. 2 depicts an
example of such a transformation on one key-bit.

The above counterexample shows that Proposition 2 is in-
correct and that GNN models are highly dependent on specific
gates in the circuit but not on their functional dependencies
with each other, and the model prediction accuracy can drop
significantly by inverting the key-bits and bubble pushing.

III. LIPSTICK ATTACK

In this section, we propose LIPSTICK, a corruptibiLIty-
aware and exPlainable GNN-based oracle-lesS aTtack on
logIc loCKing shown in Fig. 3.

1 We use seven of the ISCAS’85 [33] benchmarks shown
in Table I and lock each of them with seven logic locking
methods, including XOR-based locking [1], MUX-based lock-
ing [2], LUT-based locking [3], SAR-Lock [4], Anti-SAT [5],
BLE [6], and UNSAIL [7] all with a 64-bit key size.

Then we convert .BENCH files of both the original and
locked benchmarks into .V using ABC tool [34], and use
ModelSim to simulate and extract the ER of 10 random wrong
keys ranging from 0 to 1 in addition to the correct key. Finally,



TABLE I: ISCAS ’85 benchmarks [33] information

Bench. Gates Functionality
c1355 1503 32-bit single-error corrector
c1908 1289 16-bit single-error corrector and double-error detector
c2670 1262 12-bit arithmetic logic unit and controller
c3540 1403 8-bit arithmetic logic unit
c5315 1350 9-bit arithmetic logic unit
c6288 4703 16x16 multiplier
c7552 1241 32-bit adder and comparator

we apply bubble-pushing to create 10 resynthesized versions
of each benchmark.

Overall, our dataset consists of 5,390 elements of data with
multiple labels, including a label for the locking method, a
label for the designated key for each benchmark (be it correct
or wrong), and a label for the ER of that key.

2 We can define GNN as an undirected graph G =
(V, E , X,A) where V represents the vertex set, E is the edge
set, X constitutes the node feature matrix, and A indicates the
adjacency matrix of the graph. GNN may learn the embedding
of a single node or the complete graph by using the graph’s
structure and node attributes. In order to compute the intended
results, the GNN model adopts neighborhood aggregation by
iteratively updating a node’s embedding depending on the
embeddings of its neighbors. The following equations show
the GNN’s i-th layer, where hv

(i) represents the embedding
of node v at the i-th layer, and and N (v) shows a set of
nodes adjacent to v. We use the same method as the Graph
Isomorphism Network (GIN) architecture [29] to initialize the
parameters and consider hv

(0) = Xv .

av
(i) = AGGREGATE(i)(hu

(i−1) : u ∈ N (v)) (2)

hv
(i) = COMBINE(i)(hv

(i−1), av
(i)) (3)

The choice of the GNN method defines which aggregate
and combine functions to use. In this work, the target is
graph classification, so for the aggregation function, we use
the readout function described as follows:

hG = READOUT ({hv
(I)|v ∈ G}) (4)

Where hG is the representation of the entire graph, and the
readout function acquires the entire graph representation by
aggregating node features from the final iteration.

We use the netlist-to-subgraph tool available in [24] to
extract graphs and subgraphs from .V files of the dataset. The
main focus of the training phase is to increase the model’s
prediction accuracy as well as key precision so that in the
validation phase, it predicts a more accurate key with low
ER. A well-trained model will also provide more meaningful
information when fed into a graph explainer tool. A model
learns graph features by incorporating a hyperparameter called
learning rate, whose exact value is tricky to determine. One
naive way is to set it to a constant value, which could either
drastically increase the model’s training time if the value is
too small or stop the model from learning valuable features if
it is too large. To provide a reasonable trade-off, we define

TABLE II: OMLA’s [24] prediction accuracy and reported key
precision under different feature maps

Prediction Key Epoch Feature Map DescriptionAccuracy Precision
80.78 % 59.75% 350 Default
80.63 % 61.33% 350 Random Assignment
77.63 % 62.29% 350 Highest Assign. to Lowest #Gates

the learning rate so that after 100 epochs, it gets its 0.01
value for the next 100 epochs. Moreover, we utilize Leaky
ReLU as the GNN’s activation function to keep the value of x
using the maximum function f(x) = max(0.01x, x). Finally,
we employ an early stopping strategy to cease training the
model if, after five consecutive iterations, the model did not
achieve greater accuracy than prior iterations or if the loss
value increased to 1 in order to prevent overtraining the model.
At this point, if the model accuracy is still insufficient, we
change the sliding window size, pooling window size, and
number of layers in the model.

3 In the post-training phase, we validate the model’s
prediction accuracy and reported key precision using seen and
unseen locked benchmarks. After making sure the model’s
prediction accuracy and reported key precision are acceptable,
we feed the trained model to PGExplainer [32]. While feature
explanation in GNNs is comparable to that in non-graph neu-
ral networks, PGExplainer concentrates on explaining graph
structures. In order to offer explanations for numerous occur-
rences, PGExplainer makes use of a parametric explanation
network built on a graph-generative model to provide topo-
logical explanations.

IV. EXPERIMENTAL RESULTS

We implemented LIPSTICK on an Intel Core i7-10750H
CPU, with a RAM size of 16 GB.

A. Attack Results

To compare model prediction accuracy and reported key
precision (i.e., (1-ER)×100) in state-of-the-art works, we
chose OMLA [24], and included different features in the
circuit comprehension shown in Table II. It is evident that
in OMLA, the model’s prediction accuracy does not correlate
with the reported key precision, and a model’s accuracy of
80% does not assure high key precision. This is because
state-of-the-art GNN models focus solely on the structures
of the circuits, not their functionality. Another interesting
observation here is that OMLA’s model prediction accuracy
stayed roughly the same when using random feature map
assignment compared with the default case, which indicates
that the model does not distinguish the gates in its inference.

Table III shows LIPSTICK’s prediction accuracy and re-
ported key precision using various groups of locking schemes
and benchmarks. Unlike column “5 Random” which only
contains locking schemes that were used in the training set
meaning XOR-based locking [1], MUX-based locking [2], LUT-
based locking [3], and SAR-Lock [4], the “10 Random” and



TABLE III: LIPSTICK’s prediction accuracy and reported
key precision under random seen and unseen benchmarks.
Abreviation guide: X=XOR-based locking [1], M=MUX-based
locking [2], L=LUT-based locking, [3], S=SAR-Lock [4],
B=BLE [6]. The word “Random” refers to random samples of
the validation dataset which includes locking schemes from the
training dataset as well as two unseen locking methods: Anti-
SAT [5] and UNSAIL [7]. The values in “Random” columns
are the average of key precision for the reported keys.

Locking Prediction 5 Random 10 Random 50 Random
Scheme Accuracy Key Prec. Key Prec. Key Prec.

X 92.64% 79.84% 75.57% 74.97%
M 93.11% 79.41% 75.44% 75.66%
L 92.75% 78.57% 75.68% 75.54%
S 93.43% 79.19% 76.21% 75.94%

X,M,L 85.50% 74.86% 70.63% 70.75%
X,L,S 84.16% 74.33% 70.58% 70.06%
X,M,S 82.22% 75.78% 69.16% 68.65%
M,L,S 84.87% 75.44% 70.33% 69.28%

X,M,L,S 76.95% 69.19% 65.39% 67.03%
X,M,L,S,B 51.23% 50.63% 49.97% 50.27%

“50 Random” columns contain unseen locking methods such
as Anti-SAT [5] and UNSAIL [7] as well.

Each of the locking methods incorporates a unique algo-
rithm to secure the circuit. Hence, because the structures of
each of the circuits are different, each locking method offers
different patterns to learn. For this reason, we train the GNN
with single locking schemes as well as mixing the locking
methods in the dataset. We did not include BLE [6] in the
single-lock-scheme training because it incorporates the same
ER for all the wrong keys, and hence does not let the GNN
model learn meaningful information.

The first four rows are the results of single-lock-scheme
training, whose prediction accuracy is above 92% and the av-
erage key precision is above 75%. Comparing Tables II and III,
not only LIPSTICK outperforms OMLA in terms of prediction
accuracy (i.e., finding a key with low hamming distance to the
correct key) but also significantly improves the key precision
(i.e., finding a key with low output corruptibility). By including
unseen locking methods (i.e., “10 Random” and “50 Random”
columns), key precision accuracy drops a little but is still
reasonable due to the fact that these sets include data that
GNN was not trained on and did not learn their features.

The results in the final two rows show that, despite the
fact that our objective is to provide a universal model that
can perform well on various locking methods and different
circuit structures, a more diverse dataset (i.e., more than
three logic locking methods) does not always result in high
prediction accuracy or high key precision. Another reason is
that including BLE [6] in the training dataset may mislead the
model since in BLE any approximate key has high ER and
thus low key precision.

B. Explainability Results

The prediction results of PGExplainer are shown in Fig.
4. In each sub-figure, a sample pattern of the explainable

(a) (b) (c) (d)

Fig. 4: Explanation accuracy of LIPSTICK on locking
schemes. Bold edges demonstrate a sample pattern that PGEx-
plainer [32] was able to find. (a) XOR-based locking (b) MUX-
based locking (c) XOR-based and MUX-based methods (d)
XOR-based, MUX-based, LUT-based, and SAR-Lock methods

graph prediction is demonstrated. Colored nodes represent
different features, and black edges with the corresponding
nodes illustrate the patterns that PGExplainer was able to
find. Fig. 4a and 4b are the explanation accuracies for the
trained graphs with resynthesized benchmarks locked with
XOR-based locking and MUX-based locking, respectively. By
using the default setup of the PGExplainer we achieved 72%
explanation accuracy. While our dataset includes resynthetized
versions of the same function, which means that there are
multiple structures whose ER are the same under a specific
key, PGExplainer is based on one structure per label. In other
words, by including ER in the training process, our model
goes beyond the structure analysis of graphs, which puts
emphasis on the need for the development of an appropriate
GNN explanation tool that also goes beyond the structure.
Besides that, by providing details on manifold connections and
different patterns, PGExplainer gives us information on how
to assign features to the input graphs before feeding them to
the GNN model. This information is beneficial in allocating
rational features to the elements of the input graphs.

Moreover, the explanation accuracy drops in 4c which uses
a trained graph as input that was trained with two different
logic locking methods. The reason for this accuracy drop is
that the PGExplainer should focus on finding more explainable
features that do not have common characteristics. Finally, Fig.
4d shows the explanation accuracy result for the trained graph
with four locking methods in which the explainer is acting
as a random predictor and cannot grasp enough information
to provide plausible explanations. It is, however, justifiable
by taking another look at the characteristics that each of the
locking schemes provides to a circuit. Since the features are
diverse, in the training phase, the GNN model did not have
enough layers to learn all the various features offered by
different locking methods.

V. CONCLUSION

In this work, we proposed LIPSTICK, a corruptibility-aware
and explainable GNN-based OL attack on different logic
locking methods. LIPSTICK incorporates circuit functionality
labels in addition to structural parameters into the GNN model



with the goal of guiding the model into reporting a more
relevant key. In addition, it includes different resynthesized
versions of the same circuit, so the model can learn features
from different structural views. Furthermore, it involves dif-
ferent logic-locked circuits with both correct and wrong key
labels to let the model learn from wrong key insertion too.
The experimental results depicted that LIPSTICK can achieve
both higher model prediction accuracy and higher reported
key precision compared to state-of-the-art GNN-based attacks.
Moreover, by feeding the trained graphs to a graph explainer
tool, we can receive information on how the GNN model is
working on the dataset, what the important patterns are, and
which components are more important when assigning features
to the dataset.

ACKNOWLEDGMENT

This work is supported by the National Science Foundation
under Award No. 2245247.

REFERENCES

[1] J. A. Roy, F. Koushanfar, and I. L. Markov, “Epic: Ending piracy of
integrated circuits,” In Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 1069-1074, 2008.

[2] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu, and
R. Karri, “Fault analysis-based logic encryption,” In IEEE Transactions
on computers, pp. 410-424, 2013.

[3] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing IC piracy using
reconfigurable logic barriers,” In IEEE design & Test of computers, pp.
66-75, 2010.

[4] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, “SARLock:
SAT attack resistant logic locking,” In International Symposium on
Hardware Oriented Security and Trust (HOST), pp. 236-241, 2016.

[5] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT attack on logic
locking,” In IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 2, pp. 199-207, 2019.

[6] A. Rezaei, Y. Shen, and H. Zhou, “Rescuing logic encryption in post-
SAT era by locking & obfuscation,” In Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 13-18, 2020.

[7] L. Alrahis, S. Patnaik, J. Knechtel, H. Saleh, B. Mohammad, M. Al-
Qutayri, and O. Sinanoglu, “UNSAIL: Thwarting oracle-less machine
learning attacks on logic locking,” In IEEE Transactions on Information
Forensics and Security, vol. 16, pp. 2508-2523, 2021.

[8] A. Rezaei, Y. Shen, S. Kong, J. Gu, and H. Zhou, “Cyclic locking
and memristor-based obfuscation against CycSAT and inside foundry
attacks,” In Design, Automation & Test in Europe Conference & Exhi-
bition (DATE), pp. 85-90, 2018.

[9] R. Afsharmazayejani, H. Sayadi, and A. Rezaei, “Distributed logic
encryption: Essential security requirements and low-overhead implemen-
tation,” In Proceedings of Great Lakes Symposium on VLSI (GLSVLSI),
pp. 127-131, 2022.

[10] J. Maynard and A. Rezaei, “DK lock: Dual key logic locking against
oracle-guided attacks,” In International Symposium on Quality Elec-
tronic Design (ISQED), pp. 1-7, 2023.

[11] A. Rezaei, A. Hedayatipour, H. Sayadi, M. Aliasgari, and H. Zhou,
“Global attack and remedy on IC-specific logic encryption,” In IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), pp. 145-148, 2022.

[12] A. Rezaei, J. Gu, and H. Zhou, “Hybrid memristor-CMOS obfuscation
against untrusted foundries,” In IEEE Computer Society Annual Sympo-
sium on VLSI (ISVLSI), pp. 535-540, 2019.

[13] A. Rezaei and H. Zhou, “Sequential logic encryption against model
checking attack,” In Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 1178-1181, 2021.

[14] Y. Aghamohammadi and A. Rezaei, “CoLA: Convolutional neural
network model for secure low overhead logic locking assignment,” In
Great Lakes Symposium on VLSI 2023 (GLSVLSI), pp. 339–344, 2023.

[15] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
locking algorithms,” In International Symposium on Hardware Oriented
Security and Trust (HOST), pp. 137-143, 2015.

[16] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
Approximately deobfuscating integrated circuits,” In International Sym-
posium on Hardware Oriented Security and Trust (HOST), pp. 95-100,
2017.

[17] Y. Shen, Y. Li, S. Kong, A. Rezaei, and H. Zhou, “SigAttack: New high-
level SAT-based attack on logic encryptions,” In Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 940-943, 2019.

[18] M. Zuzak, Y. Liu, I. McDaniel, and A. Srivastava, “A combined logical
and physical attack on logic obfuscation,” In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), Article 68, pp. 1-9,
2022.

[19] A. Rezaei, R. Afsharmazayejani, and J. Maynard, “Evaluating the
security of eFPGA-based redaction algorithms,” In Proceedings of
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), article 154, pp 1-7, 2022.

[20] P. -P. Chen, X. -M. Yang, Y. -T. Li, Y. -C. Chen, and C. -Y. Wang,
“An approach to unlocking cyclic logic locking: LOOPLock 2.0,” In
Proceedings of IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), Article 155, 1–7, 2022.

[21] D. Sisejkovic, F. Merchant, L. M. Reimann, H. Srivastava, A. Hallawa,
and R. Leupers, “Challenging the security of logic locking schemes
in the era of deep learning: A neuroevolutionary approach,” In ACM
Journal on Emerging Technologies in Computing Systems vol. 17, no.
3, article 30, 2021.

[22] P. Chakraborty, J. Cruz, and S. Bhunia, “SAIL: Machine learning guided
structural analysis attack on hardware obfuscation,” In Asian Hardware
Oriented Security and Trust Symposium (AsianHOST), pp. 56-61, 2018.

[23] K. Shamsi and G. Zhao, “An oracle-less machine-learning attack against
lookup-table-based logic locking,” In Proceedings of the Great Lakes
Symposium on VLSI (GLSVLSI), pp. 133-137, 2022.

[24] L. Alrahis, S. Patnaik, M. Shafique, and O. Sinanoglu, “OMLA: An
oracle-less machine learning-based attack on logic locking,” In IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3,
pp. 1602-1606, 2021.

[25] L. Alrahis, S. Patnaik, M. A. Hanif, H. Saleh, M. Shafique, and O.
Sinanoglu, “GNNUnlock+: A systematic methodology for designing
graph neural networks-based oracle-less unlocking schemes for provably
secure logic locking,” In IEEE Transactions on Emerging Topics in
Computing, vol. 10, no. 3, pp. 1575-1592, 2021.

[26] L. Alrahis, S. Patnaik, M. A. Hanif, M. Shafique, and O. Sinanoglu,
“UNTANGLE: Unlocking routing and logic obfuscation using graph
neural networks-based link prediction,” In IEEE/ACM International
Conference On Computer Aided Design (ICCAD), pp. 1-9, 2021.

[27] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang and P. S. Yu, “A
comprehensive survey on graph neural networks,” In IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4-24,
2021.

[28] H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in graph neural
networks: A taxonomic survey,” In IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 45, no. 5, pp. 5782-5799, 2023.

[29] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?,” In International Conference on Learning Represen-
tations (ICLR), 2019.

[30] F. K. Dosilovic, M. Brcic, and N. Hlupic, “Explainable artificial in-
telligence: A survey,” In International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO),
pp. 0210-0215, 2018.

[31] Y. Shen, H. Li, S. Yi, D. Chen, and X. Wang, “Person re-identification
with deep similarity-guided graph neural network,” In European Con-
ference on Computer Vision (ECCV), pp. 486-504, 2018.

[32] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang,
“Parameterized explainer for graph neural network,” In International
Conference on Neural Information Processing Systems (NIPS), pp.
19620-19631, 2020.

[33] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational bench-
mark circuits and a target translator in Fortran,” In IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 677-692, 1985.

[34] Berkeley Logic Synthesis and Verification Group, “ABC:
A system for sequential synthesis and verification,”
https://people.eecs.berkeley.edu/∼alanmi/.


