
Vol.:(0123456789)

Journal of Hardware and Systems Security
https://doi.org/10.1007/s41635-024-00144-8

Machine Learning‑Based Security Evaluation and Overhead Analysis
of Logic Locking

Yeganeh Aghamohammadi1 · Amin Rezaei2

Received: 29 April 2023 / Accepted: 12 January 2024
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024

Abstract
Piracy and overproduction of hardware intellectual properties are growing concerns for the semiconductor industry under
the fabless paradigm. Although chip designers have attempted to secure their designs against these threats by means of logic
locking and obfuscation, due to the increasing number of powerful oracle-guided attacks, they are facing an ever-increasing
challenge in evaluating the security of their designs and their associated overhead. Especially while many so-called “prov-
able” logic locking techniques are subjected to a novel attack surface, overcoming these attacks may impose a huge overhead
on the circuit. Thus, in this paper, after investigating the shortcomings of state-of-the-art graph neural network models in
logic locking and refuting the use of hamming distance as a proper key accuracy metric, we employ two machine learning
models, a decision tree to predict the security degree of the locked benchmarks and a convolutional neural network to assign
a low-overhead and secure locking scheme to a given circuit. We first build multi-label datasets by running different attacks
on locked benchmarks with existing logic locking methods to evaluate the security and compute the imposed area overhead.
Then, we design and train a decision tree model to learn the features of the created dataset and predict the security degree
of each given locked circuit. Furthermore, we utilize a convolutional neural network model to extract more features, obtain
higher accuracy, and consider overhead. Then, we put our trained models to the test against different unseen benchmarks.
The experimental results reveal that the convolutional neural network model has a higher capability for extracting features
from unseen, large datasets which comes in handy in assigning secure and low-overhead logic locking to a given netlist.

Keywords Logic locking · Obfuscation · SAT attack · Machine learning · Labeling · Decision tree · Convolutional neural
network · Graph neural network

1 Introduction

Due to fabless manufacturing, it is critical for the semicon-
ductor industry to protect hardware Intellectual Properties
(IPs) from malicious threats. On one hand, the hardware
design costs are high, and the designers need to protect
their Integrated Circuits (ICs) from piracy. IC designers,
on the other hand, are in danger of not getting enough rev-
enue for their products due to unauthorized overproduc-
tion by untrusted third-party foundries. To overcome these

malicious threats, an IC can be locked by adding extra gates
controlled by secret key inputs [1–4]. In this case, the circuit
works properly only when the correct key is being inserted;
otherwise, it malfunctions. One naive attempt to attack the
logic-locked circuits is to exhaustively search and check
all the possible key inputs with the help of an activated
IC bought off the market. While this brute-force attack is
exponentially time-consuming with respect to the key size,
there are more efficient oracle-guided attacks that can find
the correct key in a relatively short time with the help of a
Boolean satisfiability (SAT) solver. These attacks can find
either an exact key [5] or an approximate key with low error
[6, 7] but they may still become stuck due to a specific lock
design or time and memory limits [8].

After proposing several oracle-guided SAT-based
attacks, the logic locking research field has been growing
with sequences of attacks [9–15] and defenses [8, 16–35].
While this game continues, the job of the defender requires

 * Amin Rezaei
 amin.rezaei@csulb.edu

 Yeganeh Aghamohammadi
 yeganeh@ucsb.edu

1 University of California, Santa Barbara, CA, USA
2 California State University, Long Beach, CA, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-024-00144-8&domain=pdf

 Journal of Hardware and Systems Security

more effort since if a logic locking method is secure against
all but one attack, the defender is doomed! Thus, one basic
question becomes more critical than before: how secure is a
newly proposed logic-locked design? Please note that from a
hardware designer’s perspective, we consider oracle-guided
attacks, which are stronger than oracle-less attacks. If a
scheme is secure against a strong attacker model, most likely
it is also secure against a weaker model. Additionally, the
ultimate goal of logic locking and obfuscation is to provide
security for an efficient and precious design from piracy
and overproduction, and it is implausible and cost-ineffec-
tive if the locking overhead is beyond a small, reasonable
amount. So, considering the fact that there might be more
than one locking method to secure the design effectively,
another noteworthy question comes up: how much overhead
is imposed by locking? In other words, a reliable framework
is required to demonstrate which type of locking works best
for each circuit with the minimum overhead.

In addition, recent machine learning (ML) attacks on
logic locking demonstrate the presence of structural and
functional leakage in state-of-the-art locking schemes,
which has been disregarded by the traditional understand-
ing of security [36]. While all of these initiatives are on
the attacker side [37–45], no comprehensive study has been
done on the opportunities that ML-based analysis might give
for the hardware designers to protect their ICs against piracy
and overproduction. We believe that with the help of ML,
hardware protection becomes easier, more proactive, and
more affordable. However, it can only do so if the underlying
data gives a comprehensive view of the environment [46].

Thus, in this paper, we first build a multi-label dataset in
both text and image formats by running different attacks on
benchmarks locked with existing logic locking methods to
evaluate the Error Rate (ER) of the reported key and com-
pute the imposed overhead. Then, we propose an ML-based
framework to assess the security of a given logic-locked
circuit against various attacks. From a hardware designer’s
perspective, we aim to assign a secure yet affordable locking
method to protect ICs in a fabless paradigm. Specifically,
we examine the effectiveness of two ML models: the deci-
sion tree (DT) model, which extracts features from text data,
and the convolutional neural network (CNN) model, which
extensively finds features of various circuits from image-
based data. With the help of resynthesis and data augmenta-
tion, the ML models can be trained on thousands of samples,
gain high accuracy, and become noise-resilient.

In addition, recent studies [39, 44] have shown a promis-
ing direction in the advancement of logic locking “attacks”
by employing graph neural networks (GNN). GNN is a strict
generalization of CNN, yet it consumes more power and
resources to run the algorithm, get trained, and predict the
labels. In this study, we explore the opportunities that DT
and CNN models would provide for improving logic locking

“defenses.” We also discuss the shortcomings of state-of-
the-art GNN models in logic locking and refute the use of
hamming distance (HD) as a proper parameter for key accu-
racy. The main contributions of this work are as follows:

• Discussing the shortcomings of current GNN models as
well as the HD parameter in logic locking modeling and
evaluation;

• Developing a multi-label security and overhead degree
dataset consisting of more than 10,000 benchmarks
locked with distinctive logic locking methods and tested
under different oracle-guided attacks;

• Building and training a basic DT-based model for security
evaluation of logic-locked circuits and an accurate CNN-
based model for assigning a secure and low-overhead logic
locking method to given circuits with suitable fairness
checking and hyperparameter tuning;

• Testing the created ML models on unseen logic-locked
benchmarks and evaluating the models’ security and
overhead prediction accuracy.

The rest of the paper is organized as follows: Section 2
explores the background and provides a literature review
on logic locking attacks and defenses. Section 3 discusses
the shortcomings of state-of-the-art GNN-based models in
logic locking and argues the reason behind choosing ER
as a more meaningful labeling parameter over HD. Then,
Section 4 proposes two ML-based models for logic locking
security evaluation and overhead analysis. Our extensive
experimental result is given in Section 5. Finally, conclu-
sions and future directions are discussed in Section 6.

2 Background and Related Works

In this section, we review the background of logic locking
defenses categorized into pre-SAT and post-SAT methods
and discuss the logic locking attacks grouped into oracle-
guided SAT-based and ML-based attacks.

2.1 Logic Locking Defenses

Logic locking defenses can be divided into pre-SAT
approaches such as xor-based locking [1], mux-based lock-
ing [2], and/or locking [3], lut-based locking [4] and post-
SAT approaches such as SAR-lock [16], Anti-SAT [17],
TTLock [18], CAC [19], RND-cycle [20], R &D-cycle
[21], BLE [8], ASSURE [47], and UNSAIL [48] meth-
ods. In all of these logic locking schemes, the correct key
must be put in a tamper-proof memory or integrated in the
circuit [49–51] soon after the fabricated ICs return from
the foundry.

Journal of Hardware and Systems Security

2.1.1 Pre‑SAT Defenses

In xor-based locking [1], the key bits can be matched with
a combination of random buffers and inverters. After that,
key bit controlled xor gates are used to replace the chosen
buffers and inverters. If an xor gate is hiding a buffer, the
correct key bit is “0” while if it is hiding an inverter, the
correct key bit is “1.”

In addition, in mux-based locking [2], random signals are
chosen and replaced with 2-1 muxs with the real signal and
random dummy ones as inputs and key bits as the selectors.
The correct key here must select the terminal to which the
real signal is connected and avoid the dummy signal.

The and/or locking strategy suggested in [3] inserts key-
controlled and/or gates in place of signals with a predeter-
mined imbalanced probability and a minimum slack.

The lut-based locking [4] is being implemented to IC
prefabrication. The goal is to separate the inputs from the
outputs so that every path from inputs to outputs passes
through a barrier. The key inputs are basically the values
stored in the lookup tables.

2.1.2 Post‑SAT Defenses

SAR-Lock [16] and Anti-SAT [17] are post-SAT locking
solutions that secure the correct key from the attacker by
increasing the number of Distinguishing Input Patterns
(DIPs) that may be used to prune a wrong key. In this situ-
ation, the original SAT attack [5] will take exponentially
more iterations to find the correct key with respect to the
input size. In [18] TTLock is proposed to modify the design
for exactly one input pattern. The modified design is then
corrected using a key-controlled restore unit. Removing the
restore unit results in a modified design instead of the origi-
nal design in SARLock and Anti-SAT. Another approach
called Corrupt-and-Correct (CAC) [19] corrupts the original
design using hard-coded and-trees and corrects the modified
functionality using a generic correction unit.

In [20], random cycle insertion (RND-cycle) is pre-
sented, which inserts fake cycles in the circuit with two
criteria. First, each cycle must have many entrance points.
Second, each cycle must include at least two removable
edges. In addition, dummy and real cycle insertion (R
&D-cycle) [21] turns an acyclic combinational circuit
to a cyclic circuit before cyclically locking it. First, for
each real cycle, a 2-1 mux is established, with one input
connected to the real feedback signal and the other input
being a random signal along the cycle’s feed-backward
route. In other words, picking one of the mux’s inputs
causes the circuit to be cyclic, while selecting the other
maintains it acyclic. The correct key bit must pick the real
feedback in this scenario. Then some random signals are
chosen, each of which serves as an input to multiple gates.

After that, for each of those signals, an extra 2-1 mux is
inserted. Following that, for one of the mux’s inputs, a
random dummy feedback is added via the feed-forward
line, while the other input is linked to the original selected
signal. The correct key bit must prevent the fake feedback
in this case.

As an advanced post-SAT method, Bilateral Logic
Encryption (BLE) [8], uses obfuscation and integrated
locking on a sensitive component of a circuit. Using this
method, the security impact, including the structural com-
plexity and the logic complexity, gets transmitted to the
entire circuit, whereas the performance overhead is less
than the locking of the whole circuit.

As one of the most recent state-of-the-art locking
methods, ASSURE [47] aims IP protection approach at
the Register Transfer Level (RTL). This Electronic Design
Automation (EDA)-tool-independent locking approach
obfuscates the ICs before logic synthesis. By employing
three different techniques, ASSURE obfuscates control
branches, arithmetic operations, and constants, which
leads to providing indistinguishable RTL designs.

Another recent strategy is called UNSAIL [48] which
focuses on providing a combinational locking method with
a low area overhead on a structure level to confuse ML
attacks. By inserting unsuitable data during the learning
stage of an ML attack, UNSAIL misleads the operation,
and the ML model predicts the labels incorrectly. As one
of the scopes of our work is to include the area overhead
in the labeling process, we use UNSAIL in the verifica-
tion stage. It is worth mentioning that both ASSURE and
UNSAIL have considered an oracle-less attacking envi-
ronment. Also, a holistic security diagnostic tool called
Valkyrie is proposed [52] to identify vulnerabilities in the
considered logic locking techniques from the standpoint
of structural attacks. Our focus on this paper is, however,
on oracle-guided logic attacks.

2.2 Logic Locking Attacks

Pre-SAT Hill Climbing attack [9] selects a random key
candidate and progressively moves it closer to the cor-
rect key depending on observed test patterns guided by
the hill climbing search. Randomly chosen key bits are
toggled one by one at each iteration, and the current key
combination is then subjected to a random test. To mini-
mize disparities between actual and expected responses,
a key bit value of “0” or “1” is selected. There are also
oracle-guided attacks such as SAT [5], Double DIP [7],
AppSAT [6], CycSAT [11], BeSAT [12], and IcySAT [14]
as well as ML-based attacks such as GALU [40], SAIL
[37], CutSAIL [42], UNTANGLE [43], OMLA [44], and
GNNUnlock [39].

 Journal of Hardware and Systems Security

2.2.1 Oracle‑Guided SAT‑Based Attacks

The original SAT-based attack [5] repeatedly finds unique
input patterns called DIPs, to exclude equivalence classes of
keys. During this process, the attack finds an exact key value
that matches all feasible input/output patterns. Although the
SAT-based attack ensures finding the correct key in pre-SAT
logic locking methods, finding the correct key may take expo-
nential time in the case of post-SAT locking approaches.

To attack post-SAT locking approaches like SAR-Lock
[16], Double DIP [7] is proposed to repeatedly find two DIPs
(instead of one) in each iteration and prune incorrect keys.

Finding the key of a locked circuit considering the exact-
ness limitation of the SAT-based attack could lead to a huge
amount of memory and time consumption, which is not ideal
for real-world problems. AppSAT [6] uses an approximate
flow to find the probably approximate-correct key. Random
sampling and a user-defined error threshold can be used to
establish the degree of approximation.

In order to attack RND-cycle logic locking [20], an
oracle-guided attack called CycSAT [11] is proposed. Cyc-
SAT assumes that there exists at least one correct key for
which no structural cycle occurs in the circuit. The attack
first calculates a formula, presuming the circuit has no
sensitizable cycles, and then performs the original SAT-
based attack on the constrained locked circuit.

While CycSAT uses structural analysis to find all the pos-
sible cycles in a cyclically locked circuit, BeSAT [12] pur-
sues a behavioral method to unlock cyclic logic locking with
the goal of reducing the missing cycle problem of CycSAT.

Finally, IcySAT [14], as another SAT-based attack on
cyclic circuits, has been introduced that follows a cycle
unrolling approach, contrary to CycSAT and BeSAT, which
follow a cycle breaking strategy.

2.2.2 ML‑Based Attacks

Recently, the application of Artificial Intelligence (AI) and
especially ML in hardware security has attracted attentions
[53–55], and some studies [37, 39, 40, 42–44] have pro-
posed ML-based attacks on logic locking methods. While
all of these ML frameworks are in favor of the attackers, no
research has been conducted on the potential that ML-based
analysis may provide for hardware designers to secure their
ICs against piracy and overproduction.

In [40], an ML attack is introduced to unlock logic-locked
circuits while reducing the run-time overhead of unlocking
logic. With the help of genetic algorithms, circuit unlocking
is converted into an optimization problem to find the key.
At each stage, less probable key sequences are eliminated to
gradually arrive at the correct key.

In [37], a structural ML attack calls structural analysis
using machine learning (SAIL) retrieves the design of an

obfuscated circuit on a gate-level structure. Using circuits
as inputs, the work utilizes a random forest ML model for
extracting features. This oracle-guided ML attack mainly
aims at those structural obfuscating techniques that trans-
form the circuits by small, local changes.

While SAIL mainly focuses mainly on the xor-based
locked circuits, CutSAIL [42] infers missing k-cuts from
the neighboring logic. The work basically predicts the func-
tionality of the embedded, missing parts of an obfuscated
circuit. By using a proper neighbor encoding notation such
as adjacency lists or adjacency matrices, the circuit informa-
tion gets fed to a GNN model, thereby capturing the topol-
ogy of the circuit.

In [43], researchers have presented an oracle-less link pre-
diction attack based on GNN called UNTANGLE that learns
the structure of gates in an obfuscated netlist. First, by map-
ping the key-extraction process as a link prediction problem,
the attack model infers concealed links in the obfuscating
blocks. Then, thanks to GNN, it learns the structure of the
circuit, the features of the gates, and gradually the features
of the links.

In addition, in [44], a GNN-based attack called Oracle-
less Machine Leaning Attack (OMLA) is proposed, which
employs subgraph classification to find the key bit values.
OMLA explores the obfuscated netlist to extract small
subgraphs for the key gates. The process of finding the
subgraphs continues until the enclosing subgraphs capture
the features related to the key bit values of the key gates.
When it comes to labeling, OMLA considers the key bit
value as the label for a subgraph. Then, each of the labeled
subgraphs gets fed to a GNN model, letting it learn the
characteristics associated with the circuit and predict the
key bit values. This work is synthesis-tool independent,
which makes it applicable to handling circuits synthesized
by various scripts.

Unlike OMLA, GNNUnlock [39], utilizes GNN for node
classification of circuits. The dataset for GNNUnlock is
multiple obfuscated circuits of a benchmark with different
key sizes. Using a set of edges and nodes to respectively
represent wires and gates, the model uses adjacency matrices
corresponding to the circuit as input to the GNN model.

3 Shortcomings of Current ML Models

In this section, we offer a critical view of the current GNN-
based models in logic locking and show why HD is not
enough to be considered a key accuracy metric. The work
in [56] has also investigated other limitations of GNN mod-
els used for logic locking attacks and demonstrated how, by
harnessing these limitations, the circuits can be protected
against such attacks.

Journal of Hardware and Systems Security

3.1 A Critique of GNN‑Based Attacks in Logic
Locking

Considering n, m, and k be the size of the input, out-
put, and key respectively, we define the original cir-
cuit as � ∶ {0, 1}n → {0, 1}m , and the locked circuit as
� ∶ {0, 1}k × {0, 1}n → {0, 1}m in which there is a k-bit
cor rect key K∗ = (k∗

0
, k∗

1
, ..., k∗

k−1
) ∶ {0, 1}k such that

� (X) = �(X,K∗).
Although, graph representation preserves the topology of

the circuit, using an undirected graph for netlist represen-
tation is one of the shortcomings of current GNN models
because the inputs/outputs neighborhood of the netlist will
be indistinguishable. In addition, current GNN-based attacks
cannot effectively distinguish the difference between xor-
based controlled key gates and xnor-based controlled key
gates due to a lack of consideration of circuit functionality.

Let Ka = (ka
0
, ka

1
, ..., ka

k−1
) be a k-bit reported key by the

attack, the hamming distance (HD) of Ka and K∗ can be
defined as the sum of the bitwise xor of the two keys:

Proposition 1 GNN-based attacks can report an approxi-
mate key Ka of the locked circuit � in which HD(Ka,K∗) is
very small.

Counterexample 1 We consider OMLA [44] as one of the
GNN-based attacks, in which its prediction accuracy has
been shown to be on average 80%. In means, for a reported
key Ka , it is expected to predict almost 80% of the key bits
correctly (i.e., HD(Ka,K∗) = 0.2k). If we replace all the xor
gates with xnor in the benchmarks with xor-based locking
[1] and push the inverters to the fanouts, the new correct key
will be the complement of the previous one. Figure 1 depicts
an example of such a transformation on one key bit. How-
ever, the attack accuracy drops significantly to an average
of 56% (i.e., HD(Ka,K∗) = 0.44k) which is not much better
than reporting a random key.

The above counterexample implies that Proposition 1 is
wrong and that GNN models are highly dependent on the

(1)HD(Ka,K∗) =

k−1
∑

i=0

ka
i
⊕ k∗

i
∶ {0, 1, ..., k}

specific gates in the circuit but not on their dependencies
with each other. In other words, they cannot distinguish
between two circuits with different topologies that have the
same functionality.

Takeaway 1: GNN-based attacks on locked circuits
with the same functionality but different structure do
not necessarily outperform reporting a random key.

It is worth mentioning that to address some of the short-
comings of GNNs, in [57] obtaining a general and effective
neural representation of circuits is discussed. In addition,
in [58], a netlist representation learning framework is pro-
posed to effectively acquire generic functional knowledge
from netlists. Further, an automated framework is proposed
in [59] that generates the data-flow graph for circuits such
that the proximity in the embeddings indicates similarity
between circuits. Also, in [60], a self-supervised netlist
learning method is proposed that generalizes well using
one-shot RTL of a design to recover the functionality of
obfuscated designs.

3.2 A Critique of Using Hamming Distance
as Key Accuracy

For a given key K of the locked circuit � , we can define its
error rate ER(K) as the number of input patterns in which
� (X) ≠ �(X,K) , divided by all the input patterns (i.e., 2n).
Based on this definition ER(K∗) = 0 . The important note
here is that the ER value is intrinsically based on the func-
tionality of the circuit, rather than its topology.

Proposition 2 The smaller the HD(Ka,K∗) , the more
similar the locked circuit � under Ka functions to the
original circuit � .

Counterexample 2: Consider the locked circuit in Fig. 2
with a key size of k − 1 . We increase the key size to k by
xoring one of the outputs with additional key bit kk−1 . In
this case, there is a key Ka where just the key bit kk−1 is
incorrect and all the other key bit values are the same as
K∗ . In other words, while the HD of Ka is very low (i.e.,
HD(Ka,K∗) = 1), the locked circuit � under Ka outputs dif-
ferently than the original circuit � in 100% of the input pat-
terns (i.e., ER(Ka) = 1).

i0
i1

k0

i2
i3

o0

i0
i1

k0

i2
i3

o0

i0
i1

k0

i2
i3

o0

Fig. 1 Counterexample for the accuracy of GNN-based attacks

 Journal of Hardware and Systems Security

Therefore, Proposition 2 is wrong, and HD does not cap-
ture the functionality of the circuits and thus cannot be a
good metric for key accuracy. We believe incorporating ER
into the training dataset can be a better metric in this regard.

Takeaway 2: A key of the locked circuit with a small
hamming distance to the correct key does not necessarily
outperform a random key with a large hamming distance.

4 Logic Locking Defensive Frameworks

In this section, we utilize two distinct ML algorithms to
extract features for evaluating the security degree of the
locked benchmarks as well as assigning a secure and low-
overhead logic locking method to a given circuit. The DT-
based model examines the text dataset, while the CNN-based
model extracts features from the image dataset.

4.1 MADELINE: DT Model for Locking Security
Evaluation

In this section, we propose MADELINE, a multi-label deci-
sion tree based machine learning model for logic locking
security evaluation. The process of using a DT-based
model is categorized into three main phases as shown in
Fig. 3. In the first phase, we gather and clean data, i.e., we
run different attacks on distinct locking techniques, and

based on finding the exact key, an approximate key, or no
key, we label the data. Now that each locked benchmark
has a specific label, we move on to the next phase, which is
building MADELINE. In this phase, we preprocess the data
and randomly allocate some to the training set and the rest
to the testing and evaluation sets. With the help of hyperpa-
rameter tuning, we improve the accuracy of the model and
prevent it from getting overfit. Last but not least, MADE-
LINE is fully trained and ready to predict security labels
of unseen locked benchmarks.

4.1.1 Data Gathering and Labeling for the DT Model

Some attacks are approximate in nature, meaning they find
an approximate key rather than the exact correct key. To
show whether or not the found key is exact, we refer to the
ER of the key, which has been defined and discussed in Sec-
tion 3.2. The attack is considered successful if the reported
key has a low ER with respect to the input size. Also, some
attacks perform well on some benchmarks while they cannot
find the correct key for other benchmarks considering the
time and memory limits.

We label data via two steps, as shown in Algorithm 1.
First, we run various attacks on the benchmarks locked with
different logic locking methods, approximately evaluating
the correctness of the reported key (if any) using random
test patterns and assigning a unique label for every bench-
mark under each attack. If the ER of the reported key is “1,”
then the locked benchmark is considered “safe.” Also, if a
timeout happens, i.e., if it takes more than one day with no
reported key, the benchmark is labeled “safe” too. If the
attack returns a key with an error rate of “0.3” to less than
“1,” the locked benchmark is considered “semi-safe,” imply-
ing that the locking method can protect the circuit to some
extent. If the found key is equivalent to the correct key or the
ER of the reported key is between “0” and “0.3,” it is labeled
as “unsafe.” It should be noted that some attacks have higher
priorities compared to others. For instance, if the SAT attack
[5] could find the key, the locked benchmark is definitely
“unsafe,” but if AppSAT [6] finds a key, we should test the
key and find the approximate ER of the key.

Locked

Circuit

i0
i1

in-1
k0

k1

kk-1

o0

o1

Om-1

O’m-1

Fig. 2 Counterexample for hamming distance as a key accuracy met-
ric

A�ack on
Locked

Benchmark

Report Key or
Timeout

ABC Tool:
Format

Changing

Error Rate
Evalua�on Labeling

Data
Preprocessing

Model
Training

Model
Evalua�on

Phase 1:
Labeling Data

Fairness
Checking

Model
Extrac�on

Phase 2:
Building Model

Data
Conversion

Phase 3:
Tes�ng Model

Data
Preprocessing

Data Feeding
to the Model

Feature
Extrac�on

New Label
Predic�on

Fig. 3 MADELINE framework

Journal of Hardware and Systems Security

Then, in order to find the final label of each logic-locked
benchmark, if at least one of the attack methods could find the
key, the logic-locked benchmark is “unsafe.” If none of the labels
are “unsafe” but at least one of the labels is “semi-safe,” the bench-
mark is labeled as “semi-safe,” and if all of the labels are “safe”
the whole scheme is “safe.” With the data being ready, we can
move on to phase 2, which is building and training MADELINE.

Algorithm 1 Labeling algorithm

Algorithm 2 Decision tree algorithm

4.1.2 Building the DT Model

MADELINE identifies the strategy of all the attributes of
labeling, using an ML model based on DT [61] as shown in
Algorithm 2. To build the DT, we define three major parts:
a decision node gets the unlabeled data; a chance node pre-
dicts the probability of the potential label; and an end node
represents the final labeling decision for the input data.

To build the DT, we should use two functions: Entropy and
InformationGain [62]. In building a DT, our goal is to find the
best-split option for a given blended data. This splitting process
continues until the data is not mixed anymore. The Entropy
function is being used in evaluating disorder and learning how
blended a series of data is. At each stage, if the splitting point
lowers the chaos of the dataset, entropy decreases.

During the splitting process, we have two sides, and for
each side, we need to measure the entropy. Then, by sub-
tracting the previous entropy from the current entropy, the

InformationGain function will learn how well the splitting
is, i.e., how much information each side gained. A posi-
tive result means the split learned something, which leads
to lower entropy.

As nodes are being defined, the tree is ready to be trained
so that it can learn features of the labeled data. Well-training
a machine learning model requires some provisions. First,
data allocation should be fair, i.e., data distribution in the
train set and test set should cover almost all the features.
Second, data proportion to the train and test sets should be in
a way to avoid overfitting and underfitting. Overfitting refers
to the term when a model works well on the training dataset
but poorly on the test dataset. Underfitting happens when a
model works poorly on both the train and test datasets.

To avoid the aforementioned problems, first, we perform
fairness checking. Fairness checking is an important step
in allocating data to the training, test, and evaluation sets.
It assures that the data distribution among all the bench-
marks and locking methods is as unbiased as possible and at
least one benchmark with a certain locking exists in all the
datasets. Although data allocation to each set is random, we
preprocess the data at each set to guarantee fairness. If we
skip the fairness checking step, it is possible that the model
will not learn some data features. In this situation, the train-
ing accuracy would be reasonable, as the model is working
well on the learned features, but the test accuracy could get
noticeably lower as some features in the test set may not have
been examined in the training phase.

Then, we perform hyperparameter tuning. During the hyper-
parameter tuning, we select the best set of hyperparameters to
make sure the model is working properly in both the training set
and the test set. To achieve this goal, we compare the accuracy
of the training and testing sets using various hyperparameters
to find the best hyperparameter set, optimize the model, and get
the highest possible accuracy of the model, both in the training
phase and the test phase. The hyperparameters of a DT include
maximum depth, minimum split samples, minimum leaf sam-
ples, and maximum features. Maximum depth is an integer that
defines the maximum intended depth of the DT. The greater the
maximum depth, the more complicated the tree. With a low
depth number, models do not have enough freedom to learn
the features of the data. For instance, if we have ten labels for a
dataset, the maximum depth of one would not help the tree learn
enough features about the data. Minimum split samples specify
the minimum number of samples required to split an internal
node, and minimum leaf samples specify the minimum number
of samples required to be at a leaf node. Choosing a low num-
ber for the two latter parameters helps the model differentiate
well between samples. Maximum features refer to the number
of features to consider when looking for the best split. Among
the mentioned hyperparameters, we set the minimum number
of leaf samples to be one, as we want the end nodes to have

 Journal of Hardware and Systems Security

one sample, and we do not set any particular number for the
maximum features so that the model will consider all features
available to make the best split.

To get the best accuracy from the model, we assign dif-
ferent values to the minimum sample size and maximum
depth, to learn which combination helps the model get the
highest possible accuracy, both with the training set and
the test set. As we have three labels as “safe,” “semi-safe,”
and “unsafe,” we get the accuracy of the model with the
maximum depth being set as one and two. Moreover, we
allocate a different percentage of the data to the train set
and test set, to get the desired model efficiency. Finally,
as we need to evaluate the effect of minimum split sam-
ples, we examine the model with split samples equal to the
number of labels and equal to the test size.

4.1.3 Testing the DT Model

During the training process, the model extracted features from
the benchmark, and related the assigned label to that. Once the
model is trained, learned all the features, and tested well on the
train set and test set, it is ready to predict labels of unseen data.

To test the model, we need to follow the following
steps. The first step of the testing phase is data preproc-
essing. As the data is new and has not been included in
the training phase, we need to fully examine it to make
sure the structure is the same as the training dataset and
known to the model. For example, if the new benchmark
contains new gates or components that did not exist in the
training set, the model cannot predict the correct label. In
such cases, if the new data contains unknown components,
we should re-train the model with benchmarks containing
those specific components.

Secondly, we should convert the new benchmarks to
the same format as the training dataset. Next, as soon as
the data is ready, we can feed it to our model, let it extract
features, and compare those with the learned features of
the training dataset. Based on the comparison of features,
the model can predict the label of the new benchmark.
This process repeats for each attack method, i.e., the model
examines the new data under all the predefined attacks and
extracts labels for them. Finally, the model evaluates all
the attack labels of the benchmark to give the final label
of the locking technique.

4.2 CoLA: CNN Model for Low‑Overhead
Locking Assignment

In this section, we propose CoLA, a convolutional neural net-
work logic locking assignment model that finds a low-area-
overhead secure locking method for a given netlist. First, we
gather data and use the area overhead and the ER of each

locked benchmark to label the data and make them ready for
training. Then, we train CoLA on the augmented labeled data
in order to extract their features. Finally, the trained model
is ready to assign a low-overhead logic locking method to
new, unseen data. Moreover, extracted weights of CoLA can
be used for other CNNs with different structures. The CoLA
framework is shown in Fig. 4.

4.2.1 Data Gathering, Labeling, and Augmentation

When it comes to training the neural network, a suitable dataset
is needed so that the CNN model can learn many features of
the circuit for a high-accuracy prediction. Data labeling has two
phases. First, we need to find the ER of each locking technique
for each benchmark. Second, we need to export the area over-
head of the locked benchmarks. Based on the fact that not all
the low-overhead locking methods can provide a secure design,
we need to define a parameter that relies both on the area over-
head and the security of the locking method.

Key Correctness Value (KCV): Approximate attacks
find keys with an ER between 0 and 1, which has been cal-
culated by random sampling of the oracle and the locked
benchmark under the reported key. Along the same lines, we
define a reported key’s KCV as 1 − ER . From the defender’s
perspective, the higher the ER (i.e., the lower the KCV), the
more secure the locking technique.

Locking Area Overhead (LAO): We define LAO as the
area overhead of the locking technique on the original circuit.

To allocate a parameter that mutually considers the effects
of KCV and LAO, we define Low-overhead & Secure Label
(LSL) as the following:

where � is the weighted coefficient with an amount between
0 and 1 to put emphasis on the key correctness side or the

(2)LSL = �LAO + (1 − �)KCV

Gate-Level Netlist

CoLA
Training Phase

H-parameter Tuning

Weight

Extraction

Model

Extraction

Model Training

Labeling

Data
Augmentation

Locking Area Overhead = LAO

Key Correctness Value = KCV

+ (1-α)KCVα LAO

Locked

Benchmarks

SAT-based

Attacks

XOR, MUX, LUT, SAR, Anti,

BLE, RND-C, R&D-C, UNSAIL

SAT, Double-DIP, AppSAT,

CycSAT, BeSAT, IcySAT

Resynthesis, Flipping,
Noise, Etc.

Validation Phase
Model Quantization

Low-overhead
Locking Assignment

= LSL

Fig. 4 CoLA framework

Journal of Hardware and Systems Security

area side. Moreover, since acceptable costs must be defined
based on customer and industry needs, LSL provides this
flexibility. Based on Eq. 2, among all the predicted labels of
a model, the lowest LSL is the best one, which means that
the chosen locking technique has a trade-off between the
low KCV (i.e., high security) and the low LAO (i.e., low
area). As a circuit has multiple ERs because of the usage
of different attack methods, we use the lowest ER for Eq. 2
to account for the highest vulnerability of a locking method
against any of the attacks.

While thousands of samples are needed to efficiently
train a CNN, publicly available logic-locked benchmarks
are limited. As our CNN model needs image data to get
trained, we can use different layouts of each benchmark
to augment our data. To do so, we convert the .BENCH
benchmarks into Verilog using the ABC tool [63]. Then,
using different routing settings, we export 15 different
layouts for each benchmark in terms of the structure of
the layout, and the positions of the elements. As in our
work, the structure of the layout matters, we use different
layouts for the same functionality with the help of various
resynthesis options. The different layouts are, including
but are not limited to, showing simplified logic, grouping
all related nodes, showing registers without fan-outs, and
enabling global net routing. As shown in Fig. 5, to get even
more data, we apply data augmentation techniques avail-
able in Keras [64] such as noise injection, random bright-
ness, random flip, and rotating, to name a few [65]. As a

result, we can get thousands of different layouts as input
data to CoLA. This data augmentation helps our model to
preserve its accuracy in case of noise injection, such as
various gate positions.

The CNN model needs a training dataset and a testing
dataset to get trained and tested. With the train dataset,
the CNN model learns features, and with the test dataset,
it tests the model’s functionality. We randomly allocate
10% of the gathered data to the test set and the rest of
it to the train set. The original input size of each image
data ranges from 800 × 800 pixels in smaller benchmarks
to 4000 × 4000 pixels in larger benchmarks. To use a
decreased size of data suitable for the memory and pro-
cessing resources available to us, we convert all the images
to a size of 250 × 250 pixels, which is small enough to feed
to the model, and large enough to preserve the structure
and be readable for the model.

4.2.2 Training the CNN Model

A CNN is a framework that generally gets applied to explore
visual data in the form of images. CNNs commonly use the
shared-weight architecture of the convolution filters that
slide along input data images with a pre-defined depth and
provide a set of extracted features known as feature maps.
A CNN’s key benefit is that, if defined properly without
overfitting and underfitting, it can adapt well to the dataset
and give pretty accurate results on the unseen data as well.

Fig. 5 Visual examples of data augmentation a original, b blur, c flip, d noise, e sharpen, and f rotation

 Journal of Hardware and Systems Security

Each CNN model should have enough nodes in each
layer to understand features comprehensively. Also, the
CNN model should be deep-enough, i.e., should have
enough numbers of layers, to extract as many features as
possible. In this work, we structure a CNN with five con-
volution layers for feature extraction, each following with a
maximum pooling layer, and three dense layers, also known
as fully connected layers, for classification. The number
of nodes in the last dense layers is equal to the number of
labels. Each convolution layer except the last one uses the
LeakyReLU activation function with an alpha parameter
equal to 0.01. LeakyReLU returns all the positive numbers
to their own amount, and all the negative numbers to 0.01
of their amount. The accuracy of the model, in the training
and validation phases, depends on many aspects such as the
size of the dataset, the number of layers, and the size of the
pooling layers. With the help of hyperparameter tuning, i.e.,
increasing the number of weights, changing the size of the
pooling layers, and increasing the number of layers, we can
increase the model’s accuracy while avoiding overfitting.
The structure of CoLA and its layers is shown in Fig. 6.

4.2.3 Evaluating the CNN Model

The training phase is an offline phase, which means users
have access to capacious memory as well as enough tim-
ing. So, training a roughly large model, like CoLA, will not
cause any timing or resource problems. But when it comes
to the validation phase, which is an online phase, the size
of the model and dataset affect the execution time, as well
as the consumed memory. So, we propose to use a quan-
tized version of CoLA for the validation phase. Hence, we
can get high accuracy of the model, while consuming fewer
resources. A quantized model uses less memory and pro-
cesses the computation faster.

In this regard, if the majority of the numbers fall within
the range we demand, we will use a lower bit representation
to represent input, weights, and feature maps of the CNN
model. For instance, if the original CNN model uses p bit
numbers to compute the result, the quantized version uses
q bit numbers where q < p . A CNN uses multiplication and
addition to compute the results. So it is possible that the
sum and product of two q bit numbers represent numbers
larger than q bits, as the sum of two q bit numbers is a q + 1
bit number, and the product of two q bit numbers is a 2q bit
number. To avoid this issue and keep the CNN model quan-
tized to q bit, we use the quantization function at the product
of each computation process and before feeding the number
to the next stage of computation In the case of overflow and
underflow in the quantization process, we assign the highest
and lowest range demand, respectively.

5 Experimental Results

In this section, we study MADELINE and CoLA, discuss
each methodology, examine the results, and discuss the
advantages and disadvantages of each model. We imple-
ment MADELINE and CoLA on an Intel Core i7-10,750 H
CPU, with a RAM size of 16 GB. To provide appropriate
data for both of the models, we first need to find the ER of
the reported keys for each benchmark using various attack
algorithms. Then, the dataset process splits into two sepa-
rate paths as the ML models work with different types of
data. To create a labeled dataset, we use combinational
circuit benchmarks of ISCAS’85 [66] and MCNC’91 [67],
and apply different locking methods on each benchmark.
Table 1 shows all the benchmarks and locking techniques
we use as our data, as well as the gate and key size of each
one. While small benchmarks such as “apex4” are generally

Fig. 6 CoLA structure

Journal of Hardware and Systems Security

unsafe regardless of the chosen logic locking method, the
ML model can benefit from them by learning that no logic
locking method is by default secure, and even if a secure
locking is used on a small circuit, the circuit is still unsafe
because its functionality can be revealed by brute-force
analysis of the activated IC.

5.1 MADELINE Evaluation

MADELINE’s dataset is in the form of text (i.e., .BENCH
files), so we create a dataset with the labels “safe,” “unsafe,”
and “semi-safe,” each of which refers to its specific ERs.
The term “safe” refers to an ER equal to 1, “unsafe” refers
to an ER between 0 and 0.3, and “semi-safe” refers to values
between the ranges “safe” and “unsafe.” We examined tradi-
tional pre-SAT locking methods such as xor-based locking
[1], mux-based locking [2], and/or-based locking [3], and
lut-based locking [4] as well as post-SAT point function
methods such as SAR-Lock [16] and BLE [8], and cyclic
methods such as RND-cycle [20], and R &D-cycle [21].

If SAT [5], Double DIP [7] and CycSAT [11] attacks take
more than one day to find the key, then we consider it a time-
out, which means the key cannot be found, and thereby the
locked benchmark is “safe” under these attacks. For AppSAT
[6], BeSAT [12], and IcySAT [14], we used the NEOS suite

[68] with the default setup. For Hill Climbing [9], the itera-
tion limit is being set to 1200.

To extract the ER of a reported key, we test random samples
equal to the logarithm of the input size. At this stage, we use the
ABC tool [63] to convert the .BENCH files into .V files to be
able to simulate and examine the oracle and locked benchmarks
using ModelSim. To keep the results fair, we impose the
same test set on the reported key of a locked benchmark for
different attacks. Inputs get chosen randomly, but when we
select a random input set on one locked benchmark, we keep
applying the same input to all other logic-locked versions of
that benchmark. For a given benchmark, the locked version
and oracle will represent the same output if the inputs are the
same and the applied key is correct. During sampling and
comparing the waveforms, we record the approximate error
of the key. When the ER is found, the locked benchmark is
ready to be labeled. Figure 7a shows the error rate distribution
of the dataset. We want to emphasize that an imbalanced ER
in the dataset helps MADELINE learn the security of a logic-
locked circuit better and extract distinctive features from the
logic-locked circuits in which ensemble attacks can report an
exact key (i.e., ER=0) or no key (i.e., ER=1). From a decision-
making perspective, there is no “semi-safe” logic-locked circuit.
However, we consider “semi-safe” labeling to give the user
insights on a given locked circuit that is currently not safe, but
it may be improved to become safe.

Table 1 Logic locking benchmarks (#In, #K, and #G are the number of primary inputs, key inputs, and gates, respectively)

Bench #In XOR-based MUX-based AND/OR-
based

LUT-based SAR-lock Anti-SAT BLE RND-cycle R
&D-cycle

[1] [2] [3] [4] [16] [17] [8] [20] [21]

#G #K #G #K #G #K #G #K #G #K #G #K #G #K #G #K #G #K

apex2 39 643 31 642 32 642 32 1780 292 644 31 687 38 713 40 630 20 670 40
apex4 10 5628 268 5628 269 5629 269 18,441 3356 5633 268 5381 10 5388 10 5380 20 5420 40
c432 36 170 8 170 10 140 10 1101 184 168 8 233 36 254 36 180 20 220 40
c499 41 212 10 214 12 214 12 1891 288 212 10 291 44 310 42 222 20 262 40
c880 60 404 19 385 22 405 22 1831 3112 403 19 504 60 536 60 403 20 443 40
c1908 33 925 44 734 46 926 46 1586 200 928 44 945 32 968 34 900 20 940 40
c2670 233 1253 60 1264 71 1264 71 3535 540 1257 60 1038 71 1781 234 1654 20 1253 40
c3540 50 1512 76 1502 76 1755 86 5026 836 1511 76 1634 83 1803 52 1689 20 1729 40
c5315 178 2427 115 2113 124 2431 124 7841 1176 2424 115 2307 134 1495 178 2327 20 2367 40
dalu 75 2418 115 2417 119 2417 119 4875 640 2436 115 2447 74 2491 76 2318 20 2358 40
des 256 6804 324 6809 336 6809 336 17,879 2856 6804 324 6550 38 7116 256 6493 20 6533 40
ex5 8 1109 53 1108 53 1108 53 4627 888 1109 53 1072 8 1078 8 1075 20 1115 40
i4 192 360 17 365 27 365 27 1538 272 355 17 527 94 821 192 358 20 398 40
i7 199 1384 66 1391 76 1391 76 4921 908 1389 66 1340 12 1818 200 1335 20 1375 40
i8 133 2589 123 2594 130 2594 130 8144 1348 2598 66 2533 34 2802 134 2484 20 2524 40
i9 88 1089 52 1091 56 1091 56 3477 608 1092 52 1088 26 1258 88 1055 20 1095 40
k2 46 1908 91 1907 93 1908 93 4482 620 1906 91 1908 46 1933 46 1835 20 1875 40
seq 41 3697 176 3697 178 3697 178 10,829 1848 3700 176 3600 40 3627 42 3539 20 3579 40

 Journal of Hardware and Systems Security

Examples of the labeling are given in Tables 2 and
3 which show the ER and final labeling decision of two
benchmarks with different locking methods. As shown in the
table, if one attack could find the exact key, the ER equals
0, which means “unsafe” in our labeling technique. After
the ER of all attacks is ready, we will define the final deci-
sion of the locking method on the benchmark based on the
ER of the reported key by each attack. Based on the data
in Tables 2 and 3, a benchmark could get different labels
based on the locking technique and the attack method. For
example, benchmark “c1908” under the lut-based locking
with 1586 gates and a key size of 200 bits is being labeled
as “unsafe,” whereas the same benchmark under the BLE
benchmark with 968 gates and a key size of 34 bits is being
labeled as “safe” because none of the attack methods could
find the key. It is worth mentioning that some attacks could
not find the key to a locked benchmark. For instance, SAT
and Double DIP can not find the key of RND_C and R
&D_C locking methods, hence their ERs are 1, known as
“safe” for those attacks.

After creating the dataset, we build MADELINE in
PYTHON and test it to find out the accuracy of the model.

The accuracy of the training phase and testing phase can
be affected by several hyperparameters. Figure 8 shows the
accuracy results of MADELINE, based on various dataset
proportions and different hyperparameters. Specifically, we
investigate the accuracy of the model based on allocating
60% to 90% of the data to the train set, depth sizes of 1 and
2, and two different minimum sample split sizes. A general
comparison of the accuracy gained with different minimum
sample splits shows that a minimum sample split set to the
size of the label works better than setting it equal to the size
of the test set and it can help the model gain up to 13.54%
total improvement in the training accuracy and 15.38% in
the testing accuracy. A comparison between the results in
Fig. 8 shows that the depth of the tree matters when the data
allocated to the train set is less than 70%. That being said,
if we allocate enough data to the train set, we do not have
to worry about the complexity of the tree. Moreover, using
appropriate hyperparameters, by allocating more data to the
train set, we help the model learn features better, thereby
achieving higher accuracy with the test dataset.

To evaluate the model and predict labels of the new,
unseen data, we trained our model with 90% of the dataset,

Fig. 7 Dataset distributions a error rate b area overhead

Table 2 MADELINE: Sample
labeling for apex4

Bench SAT D-DIP CycSAT AppSAT Hill IcySAT BeSAT Label
[5] [7] [11] [6] [9] [14] [12]

SAR 0 0 0 0.002 0.002 0.054 0.002 Unsafe
AND/OR 0 0 0 0.033 0.421 0.42 0.38 Unsafe
LUT 0 0 0 0.31 0.531 0.35 0.36 Unsafe
XOR 0 0 0 0.1 0.289 0.36 0.273 Unsafe
MUX 0 0 0 0 0 0 0 Unsafe
BLE 0 0 0 0 0 0.044 0 Unsafe
RND_C 1 1 0 0 0 0.026 0 Unsafe
R &D_C 1 1 1 1 1 0.011 0 Unsafe

Journal of Hardware and Systems Security

as it helps the model get the highest possible accuracy with-
out any overfitting. In Table 4, we provided some of the
prediction results on unseen data. We used completely new
data to make sure the model was unfamiliar with the struc-
ture of each benchmark. We also included combinational
versions of two benchmarks from ITC’99 [69] to check the
effectiveness of MALEDINE on a completely new dataset.

We performed attacks on these locked benchmarks and
found the labels based on our labeling method. Then, we fed
the unlabeled data to the model so that it could predict the label
based on what it learned previously. The strong majority of the
predicted labels are the same as actual labels, which means that

the model learned most of the features of the training data and
is working properly on unseen benchmarks. Overall, MADE-
LINE has 99.01% of prediction accuracy.

The model can benefit from the hyperparameter tuning
in the prediction phase, too. Not only does hyperparameter
tuning improve the model’s accuracy and prevent overfit-
ting, it also helps reduce the model execution time for the
prediction. In Table 5, we can see the effect of the mentioned
parameters on the prediction execution time. For instance,
if we use a complex tree, with a depth of 2 and the sample
split size equals to the size of the test set, it takes 141 mil-
liseconds for the model to predict the label, whereas for a

Table 3 MADELINE: Sample
labeling for c1908

Bench SAT D-DIP CycSAT AppSAT Hill IcySAT BeSAT Label
[5] [7] [11] [6] [9] [14] [12]

SAR 0 0 0 0 0.017 0 0.015 Unsafe
AND/OR 0 0 0 0 0.012 0 0.393 Unsafe
LUT 0 0 0 0.075 0.129 0.072 0.34 Unsafe
XOR 0 0 0 0 0 0 0 Unsafe
MUX 0 0 0 0 0.192 0 0.148 Unsafe
BLE 1 1 1 1 1 1 1 Safe
RND_C 1 1 0 0 0 1 0 Unsafe
R &D_C 1 1 1 1 1 0.41 1 Semi

0
10
20
30
40
50
60
70
80
90

100

MSS=Test Size MSS=3

)
%(ycaruccA

Train, D=1 Test, D=1 Train, D=2 Test, D=2

(a)

0
10
20
30
40
50
60
70
80
90

100

MSS=Test Size MSS=3

)
%(ycaruccA

Train, D=1 Test, D=1 Train, D=2 Test, D=2

(b)

0
10
20
30
40
50
60
70
80
90

100

MSS=Test Size MSS=3

)
%(ycaruccA

Train, D=1 Test, D=1 Train, D=2 Test, D=2

(c)

0
10
20
30
40
50
60
70
80
90

100

MSS=Test Size MSS=3

)
%(ycaruccA

Train, D=1 Test, D=1 Train, D=2 Test, D=2

(d)

Fig. 8 MADELINE training & test set accuracy with different hyperparameters. D, depth; MSS, minimum sample split. a Train set = 60%, b
train set = 70%, c train set = 80%, and d train set = 90%

 Journal of Hardware and Systems Security

less complex tree, with a depth of one and a sample split
size equals to the number of labels (i.e., 3), it takes 66 mil-
liseconds for the model to predict the label. In this case, the
model has the same accuracy but is 53.2% more efficient in
execution time.

5.2 CoLA Evaluation

As CoLA is a CNN model, it gets trained on data in the form
of images, compared to GNN models, which get data in the
shape of graphs. Contrary to GNN, the CNN data is independ-
ent of the circuit size. A CNN model uses the same sizes of
images to get trained, which may sound tricky at first because
a fixed-size image must provide enough information about
circuits with different sizes. In this regard, we should find a
proper image size that is computation-friendly so that we can
squeeze a large circuit into it while making sure not to lose
circuit information. However, on the other hand, this could be
helpful to the training resource usage because no matter what
the size of the circuit is, the CNN data size is fixed.

In addition, a GNN model works properly at predicting
the key only if it receives the features of the benchmarks
before training. This makes the model limited to the struc-
ture of the circuit, and the model will not be able to distin-
guish resynthesized versions of a circuit. However, by feed-
ing various structures of a benchmark to the CNN model,
the model learns the features from scratch and categorizes
resynthesized versions of a benchmark in the same group.

To extract data in the form of images, we used the web
edition of Intel Quartus II. To create a labeled dataset, we
examined different traditional pre-SAT locking methods
such as xor-based locking [1], mux-based locking [2], and
lut-based locking [4] as well as post-SAT methods such as
SAR-Lock [16], Anti-SAT [17], BLE [8], RND-cycle [20],
and R &D-cycle [21]. We recorded the LAOs by comparing
the area of each locked benchmark with its original version.
To gather the ERs, we ran different attacks [5–7, 11, 12, 14]
on the locked benchmarks and chose the minimum ER among
the reported keys for each benchmark. The setup for SAT [5],
Double DIP [7], and CycSAT [11] attacks is the same as the
default setup, and we consider it a timeout with an ER of
1, if the key cannot be found in one day of running. For all
the other attack methods (i.e., AppSAT [6], BeSAT [12], and
IcySAT [14]), we used the NEOS suite [68] with the default
setup. Then, we used Eq. 2 to assign “LSL” labels to each
benchmark with � = 0.5 which means that both area overhead
and security degree are considered to be equally important.
The distribution of the area overhead in our dataset is shown
in Fig. 7b. Finally, we converted the benchmarks to image
netlists and augmented the gathered data to more than 10, 000
samples using the approaches discussed in Section 4.

Table 4 MADELINE: Unseen
samples for label prediction

Bench Lock #In #G #K Predict Actual

c1355 SAR 41 693 137 Unsafe Unsafe
c1355 SAR 41 837 273 Unsafe Unsafe
ex1010 AND/OR 10 6335 1269 Unsafe Unsafe
ex1010 AND/OR 10 7604 2538 Unsafe Unsafe
ex1010 LUT 10 17,918 3256 Unsafe Unsafe
c3540 LUT 50 5026 836 Unsafe Unsafe
c7552 XOR 207 3877 351 Unsafe Unsafe
c7552 XOR 207 5311 1756 Unsafe Unsafe
c2670 MUX 233 1716 713 Unsafe Unsafe
c7552 MUX 207 4880 1860 Unsafe Unsafe
b14_C MUX 227 9433 621 Unsafe Unsafe
ex1010 BLE 10 5094 10 Unsafe Unsafe
c6288 BLE 34 2504 34 Safe Safe
b19_C BLE 6666 213,520 6666 Safe Safe
c3450 RND_C 50 1689 20 Semi Semi
c7552 RND_C 207 3532 20 Semi Semi
c3540 R &D_C 50 1729 40 Safe Semi
c7552 R &D_C 207 3572 40 Safe Safe

Table 5 MADELINE: Prediction execution time for c6288 locked
with BLE, based on the hyperparameter tuning

Min sample split Max depth Prediction
time (ms)

Size of test set 2 141
Size of labels 2 88
Size of test set 1 91
Size of labels 1 66

Journal of Hardware and Systems Security

After creating the dataset, we built CoLA using Python
and the Tensorflow package, trained it, and extracted the
features of the image-shaped benchmarks. Then, a quantized
version of CoLA is used to get validation computations done
fast. The accuracy of the training phase and testing phase
can be affected by several hyperparameters. Using Keras
[64] hyperparameter tuning, we increased the accuracy of
the training and validation phases with a loss value of below
0.1% and without overfitting or underfitting. To avoid over-
training the model, we used an early stopping technique to
stop training the model if, after five consecutive iterations,
the model did not get higher accuracy than previous itera-
tions or if the loss value got higher than 1. At this stage, if
the model accuracy was still not high enough, we restruc-
tured the model layers by changing the size of the sliding
window, pooling window, and the number of layers.

Figure 9 shows the values of validation accuracy and
loss of CoLA per epoch. We trained the model for 1500
epochs with the primary dataset, which is 240 elements
of data without augmentation, 4560 elements of data with

Keras-only augmentation, and 10560 elements of data with
all the augmentation techniques mentioned above. As illus-
trated, with a small amount of data, the accuracy cannot go
higher than 69% , and the loss stays at a high rate of 4% which
both are not ideal. On the other hand, if we feed enough
data to the model, we can gain an accuracy of 97.3% for the
validation phase with a loss value of around 0.05% , two of
which show the model’s proper functionality. The validation
accuracy ensures that, unlike GNN models, CoLA learns
features beyond the structure and topology of the circuit.

As a neural network uses inputs, weights, and activa-
tions to predict the label, the values of each of the numbers
affect the model’s accuracy. The distribution of the values
of weights and activations is represented in Fig. 10. As the
figure shows, over 99% of the numbers fall within the 8-bit
representation range, and less than 1% of the numbers place
in the 16-bit range. Consequently, using an 8-bit quantized
model, we can still gain the same accuracy as the original
model gives us. Table 6 shows a group of data to compare
the execution time of the quantized model and the original

20
30
40
50
60
70
80
90

100

Series1

Series2

Series3

0

1

2

3

4

5

6

Series1
Series2
Series3

Epochs Epochs

% ycarucc
A Lo

ss
 %

240 Images
4560 Images

10560 Images240 Images
4560 Images

10560 Images

Fig. 9 CoLA: Validation accuracy and loss per epoch

Weights Range Activation Range

tnuo
m

A noitubirtsi
D D

ist
ri

bu
tio

n
A

m
ou

nt

8-bit Floating Point: 99.63%

16
-

:tnioP gnitaolF tib

16
-b

it
Fl

oa
tin

g
Po

in
t:

8-bit Floating Point: 99.83%

16
-b

it
Fl

oa
tin

g
Po

in
t:

16
-b

it
Fl

oa
tin

g
Po

in
t:

0.
24

%

0.
4%

0.
05

%

0.
12

%

0 -0.015625 -0.015625 3.03125-3.03125 0 -0.015625 -0.015625 3.03125-3.03125

Fig. 10 CoLA: Distribution of the weights and activation values

 Journal of Hardware and Systems Security

model. We used a validation set with some benchmark sizes
larger than the training dataset to check the accuracy of the
model for the larger, unseen data. Results show that the
quantized CoLA assigns the logic locking faster than the
original model with a negligible loss. The accuracy of the
quantized model is 95.61% on 1056 items of validation data,
whereas the original model is 97.3%.

5.3 MADELINE and CoLA Validation on Unseen
Locking

MADELINE and CoLA work well on the datasets that are
familiar to the model, with accuracy values of 99.01% and
97.3% , respectively. However, to study the models’ effi-
ciency, we should test the models’ performance with cir-
cuits locked with a brand new method. We use UNSAIL
[48] for this purpose. Feeding UNSAIL benchmarks to
MADELINE does not require any additional steps since its
primary goal is label prediction, but because CoLA assigns
a locking method to unlocked benchmarks, it needs some
modification to work with locked data properly. In this
regard, we manipulated CoLA to assign a locking method
only if the input benchmark needs it; otherwise, it returns
nothing, which means the circuit is locked securely. In addi-
tion, to prepare an adequate amount of data for prediction,

we utilized data augmentation and circuit resynthesis. A
set of publicly available UNSAIL benchmarks is shown in
table 7. The terms “v1” to “v4” refer to different versions of
UNSAIL locking, which leads to various locked structures
and a different number of gates.

Table 8 shows average accuracy for each of the UNSAIL
benchmarks using MADELINE and CoLA. As we can see
in the results of this table, MADELINE accuracy drops dra-
matically because circuit data in text format provides details
about the number of each gate in the circuit but does not
give enough information on the entire structure of the cir-
cuit as well as its functionality. On the other hand, CoLA’s
accuracy ranges from 72.06% to 88.75% with an average of
80.11% which is still pretty much acceptable given the fact
that UNSAIL locking was completely new to the model.
CoLA works better than MADELINE because it gets the data
in the shape of images, so it has the chance to distinguish
different resynthesized versions of the same benchmarks and
learn benchmarks’ features beyond the structure of the
circuit and finds information about its functionality.
However, we cannot determinably tell if this is always
the case for other unseen locking methods. One note
to mention here is that training is a one-time offline
phase, and the models can be re-trained at any time on
new locking schemes.

Table 6 CoLA: Label prediction
and execution time on a group
of benchmarks on the validation
dataset using the 8-bit quantized
model. The augmentation type
is resynthesis. Prediction LSL,
prediction Label with quantized
model; Q time, quantized model
execution time; R time, regular
model execution time

Benchmarks Overhead Q time (ms) R time (ms) Prediction LSL Same label?

ex1010 5% 360 1179 Anti-SAT Yes
ex1010 10% 173 612 Anti-SAT Yes
c3540 25% 271 843 Anti-SAT Yes
c7552 5% 149 577 Anti-SAT No
c7552 5% 159 593 Anti-SAT Yes
c1355 5% 124 541 SAR-Lock No
c1355 10% 169 627 SAR-Lock Yes
c3450 5% 173 663 R &D-C Yes
c3540 10% 233 760 R &D-C Yes
c7552 10% 207 827 R &D-C Yes
ex1010 25% 268 873 BLE Yes
c2670 5% 145 659 BLE Yes
c6288 5% 142 736 BLE Yes
c7552 25% 186 619 BLE Yes

Table 7 Number of gates
in UNSAIL dataset with
#Keysize=128

Benchmarks c880 c1908 c2670 c3540 c5315 c6288 c7552

v1 347 360 641 1063 1338 2438 1377
v2 509 - 636 1066 1352 2440 1337
v3 401 - 633 1071 1337 2511 1385
v4 398 - 638 1078 1329 - 1372

Journal of Hardware and Systems Security

5.4 MADELINE and CoLA Validation on New
Benchmark and Unseen Locking

As another experiment, we study the models’ performance
with new benchmarks locked with an unseen locking method.
We use 5 different synthesized versions of b14_C [69] locked
with CAC method [19] with a key size of 64. The benchmarks
are available in the repository of Valkyrie [52]. We converted
.V files to .BENCH in order to feed them to the models.
Table 9 shows average accuracy using MADELINE and CoLA.
The results are almost the same as in Section 5.3 where we had
a new locking method but with the benchmark that has been
used in the training phase. This may lead to the conclusion that
our models can perform the same on new and unseen circuits,
which is the ultimate goal of the paper.

6 Conclusion

Because of the rising threat of diverse attacks on logic lock-
ing, evaluating the security and overhead of logic-locked
digital circuits is more critical than ever. In this paper, to
evaluate the security of logic locking methods, we proposed
MADELINE, a DT-based model that receives circuits in the
form of text data and uses the error rate to report whether or
not a locking method is “safe” for a specific circuit. Then, we
proposed CoLA, a CNN-based model that receives circuits in
the form of image data and employs key correctness values
and area overhead to assign a low-overhead and secure lock-
ing method to a given circuit. Experimental results showed
that although both models received high accuracy in the case
of unseen benchmarks, in the case of unseen locking meth-
ods, MADELINE performs poorly while CoLA still keeps up
a reasonable accuracy.

We do think that there is no foolproof approach to pre-
venting a zero-day attack, but there is immense value in
having a reliable and proactive framework to assess the
overhead and security of a newly proposed logic locking
technique. For future works, the explainability of the deci-
sions made by the ML models can be pursued to identify

secure yet low-overhead structures in digital circuits for a
design-for-security approach.

Statements and Declarations

Funding This material is based upon work supported by the National Science
Foundation under Award No. 2245247.

Competing Interests The authors declare no competing interests.

Author Contributions YA and AR contributed equally to this work.

Data Availibility The dataset is available from the corresponding author
upon request.

Ethical Approval Not applicable

References

 1. Roy JA,Koushanfar F, Markov IL (2008) Epic: Ending piracy of
integrated circuits. In: Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), pp 1069-1074

 2. Rajendran J, Zhang H, Zhang C, Rose GS, Pino Y, Sinanoglu O,
Karri R (2013) Fault analysis-based logic encryption. In: IEEE
Transactions on Computers, pp 410-424

 3. Dupuis S, Ba PS, Natale GD, Flottes ML, Rouzeyre B (2014) A
novel hardware logic encryption technique for thwarting illegal
overproduction and hardware trojans. In: International On-Line
Testing Symposium (IOLTS), pp 49-54

 4. Baumgarten A, Tyagi A, Zambreno J (2010) Preventing IC piracy
using reconfigurable logic barriers. In: IEEE design & Test of
computers, pp 66-75

 5. Subramanyan P, Ray S, Malik S (2015) Evaluating the security
of logic locking algorithms In International Symposium on Hard-
ware Oriented Security and Trust (HOST), pp 137-143

 6. Shamsi K, Li M, Meade T, Zhao Z, Pan DZ, Jin Y (2017) App-
SAT: approximately deobfuscating integrated circuits. In: Inter-
national Symposium on Hardware Oriented Security and Trust
(HOST), pp 95-100

 7. Shen Y, Zhou H (2017) Double DIP: re-evaluating security of
logic encryption algorithms. In: Great Lakes Symposium on VLSI
(GLSVLSI), pp 179-184

 8. Rezaei A, Shen Y, Zhou H (2020) Rescuing logic encryption in
post-SAT era by locking & obfuscation. In: Design, Automation
& Test in Europe Conference & Exhibition (DATE), pp 13-18

Table 8 Average label
prediction for UNSAIL
benchmarks using MADELINE
and CoLA

Benchmarks c880 c1908 c2670 c3540 c5315 c6288 c7552 Average

MADELINE 60.72% 59.24% 56.03% 53.48% 52.66% 50.12% 50.01% 54.60%
CoLA 88.75% 86.40% 83.37% 80.92% 76.46% 72.81% 72.06% 80.11%

Table 9 Average label
prediction for CAC benchmarks
with #Keysize=64 using
MADELINE and CoLA

Benchmarks b14_C V1 b14_C V2 b14_C V3 b14_C V4 b14_C V5 Average

MADELINE 51.23% 55.24% 56.02% 51.93% 54.31% 53.75%
CoLA 80.24% 82.07% 78.49% 77.96% 79.22% 79.20%

 Journal of Hardware and Systems Security

 9. Plaza SM, Markov IL (2015) Solving the third-shift problem in
IC piracy with test-aware logic locking. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pp
961-971

 10. Rezaei A, Afsharmazayejani R, Maynard J (2022) Evaluating the
security of eFPGA-based redaction algorithms. In: Proceedings of
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD) 154:1-7

 11. Zhou H, Jiang R, Kong S (2017) CycSAT: SAT-based attack on
cyclic logic encryptions. In: IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pp 49-56

 12. Shen Y, Li Y, Rezaei A, Kong S, Dlott D, Zhou H (2019) BeSAT:
behavioral SAT-based attack on cyclic logic encryption. In: Pro-
ceedings of the 24th Asia and South Pacific Design Automation
Conference, pp 657-662

 13. Shen Y, Li Y, Kong S, Rezaei A, Zhou H (2019) SigAttack: new
high-level SAT-based attack on logic encryptions. In: Design,
Automation & Test in Europe Conference & Exhibition (DATE),
pp 940-943

 14. Shamsi K, Pan DZ, Jin Y (2019) IcySAT: improved SAT-based
attacks on cyclic locked circuits. In: IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp 1-7

 15. McDaniel I, Zuzak M, Srivastava A (2022) A black-box sensi-
tization attack on SAT-hard instances in logic obfuscation. In:
IEEE International Conference on Computer Design (ICCD), pp
239-246

 16. Yasin M, Mazumdar B, Rajendran J, Sinanoglu O (2016) SAR-
Lock: SAT attack resistant logic locking. In: International Sym-
posium on Hardware Oriented Security and Trust (HOST), pp
236-241

 17. Xie Y, Srivastava A (2019) Anti-SAT: mitigating SAT attack on
logic locking. IEEE Trans Comput-Aided Des Integr Circuits Syst
38(2):199–207

 18. Yasin M, Sengupta A, Nabeel MT, Ashraf M, Rajendran J, Sinano-
glu O (2017) Provably-secure logic locking: from theory to practice.
In: ACM SIGSAC Conference on Computer and Communications
Security (CCS), pp 1601-1618

 19. Shamsi K, Meade T, Li M, Pan DZ, Jin Y (2019) On the approxi-
mation resiliency of logic locking and IC camouflaging schemes.
IEEE Trans Inf Forensics Secur 14(2):347–359

 20. Shamsi K, Li M, Meade T, Zhao Z, Pan DZ, Jin Y (2017) Cyclic
obfuscation for creating SAT-unresolvable circuits. In: Proceed-
ings of the on Great Lakes Symposium on VLSI, pp 173-178

 21. Rezaei A, Shen Y, Kong S, Gu J, Zhou H (2018) Cyclic lock-
ing and memristor-based obfuscation against CycSAT and inside
foundry attacks. In: Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), pp 85-90

 22. Rezaei A, Li Y, Shen Y, Kong S, Zhou H (2019) CycSAT-
unresolvable cyclic logic encryption using unreachable states. In:
Asia and South Pacific Design Automation Conference (ASP-
DAC), pp 358-363

 23. Rezaei A, Zhou H (2021) Sequential logic encryption against
model checking attack. In: Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp 1178-1181

 24. Hu B, Tian J, Shihab M, Reddy G, Swartz W, Makris Y, Schaefer BC,
Sechen C (2019) Functional obfuscation of hardware accelerators
through selective partial design extraction onto an embedded FPGA.
In: Great Lakes Symposium on VLSI (GLSVLSI), pp 171-176

 25. Mohan P, Atli O, Sweeney J, Kibar O, Pileggi L, Mai K (2021)
Hardware redaction via designer-directed fine-grained eFPGA
insertion. In: Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp 1186-1191

 26. Bhandari J, Moosa A, Tan B, Pilato C, Gore G, Tang X, Temple
S, Gaillardon P, Karri R (2021) Exploring eFPGA-based redac-
tion for IP protection. In: International Conference On Computer
Aided Design (ICCAD), pp 1-9

 27. Roshanisefat S, Kamali HM, Homayoun H, Sasan A (2020) SAT-
hard cyclic logic obfuscation for protecting the IP in the manufac-
turing supply chain. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, pp 954-967

 28. Kamali HM, Azar KZ, Gaj K, Homayoun H, Sasan A (2018) LUT-
Lock: a novel LUT-based logic obfuscation for FPGA bitstream
and ASIC-hardware protection. In: IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pp 405-410

 29. Zhang D, He M, Wang X, Tehranipoor M (2017) Dynamically
obfuscated scan for protecting IPs against scan-based attacks
throughout supply chain. In: VLSI Test Symposium (VTS), pp 1-6

 30. Karmakar R, Kumar H, Chattopadhyay S (2019) Efficient key
gate placement and dynamic scan obfuscation towards robust logic
encryption. In: IEEE Transactions on Emerging Topics in Computing

 31. Zhou H, Rezaei A, Shen Y (2019) Resolving the trilemma in
Logic encryption. In: IEEE International Conference on Computer
Aided Design (ICCAD), pp 1-8

 32. Afsharmazayejani R, Sayadi H, Rezaei A (2022) Distributed logic
encryption: essential security requirements and low-overhead
implementation. In: Proceedings of Great Lakes Symposium on
VLSI (GLSVLSI), pp. 127-131

 33. Rezaei A, Hedayatipour A, Sayadi H, Aliasgari M, Zhou H (2022)
Global attack and remedy on IC-specific logic encryption. In:
IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), pp. 145-148

 34. Zhang Y, Hu Y, Nuzzo P, Beerel PA (2022) “TriLock: IC protec-
tion with tunable corruptibility and resilience to SAT and removal
attacks. In: Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp 1329-1334

 35. Maynard J, Rezaei A (2023) DK lock: dual key logic locking
against oracle-guided attacks. In: International Symposium on
Quality Electronic Design (ISQED), pp. 1-7

 36. Sisejkovic D, Reimann LM, Moussavi E, Merchant F, Leupers R
(2021) Logic locking at the frontiers of machine learning: a survey
on developments and opportunities. In: IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), pp. 1-6

 37. Chakraborty P, Cruz J, Bhunia S (2018) SAIL: machine learn-
ing guided structural analysis attack on hardware obfuscation. In:
Asian Hardware Oriented Security and Trust Symposium (Asian-
HOST), pp. 56-61

 38. Chen H, Fu C, Zhao J, Koushanfar F (2019) GenUnlock: an auto-
mated genetic algorithm framework for unlocking logic encryp-
tion. In: IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 1-8

 39. Alrahis L, Patnaik S, Hanif MA, Saleh H, Shafique M, Sinanoglu O
(2021) GNNUnlock+: a systematic methodology for designing graph
neural networks-based oracle-less unlocking schemes for provably secure
logic locking. IEEE Trans Emerg Topics Comput 10(3):1575-1592

 40. Chen H, Fu C, Zhao J, Koushanfar F (2022) GALU: a genetic
algorithm framework for logic unlocking. Research and Practice,
In Digital Threats

 41. Azar KZ, Kamali HM, Homayoun H, Sasan A (2020) NNgSAT:
neural network guided SAT attack on logic locked complex struc-
tures. In: IEEE/ACM International Conference On Computer
Aided Design (ICCAD), pp 1-9

 42. Shamsi K, Zhao G (2022) An oracle-less machine-learning attack
against lookup-table-based logic locking. In: Proceedings of the
Great Lakes Symposium on VLSI (GLSVLSI), pp. 133-137

 43. Alrahis L, Patnaik S, Hanif MA, Shafique M, Sinanoglu O (2021)
UNTANGLE: unlocking routing and logic obfuscation using
graph neural networks-based link prediction. In: IEEE/ACM
International Conference On Computer Aided Design (ICCAD),
pp. 1-9

 44. Alrahis L, Patnaik S, Shafique M, Sinanoglu O (2021) OMLA: an
oracle-less machine learning-based attack on logic locking. IEEE
Trans Circuits Syst II Express Briefs 69(3):1602–1606

Journal of Hardware and Systems Security

 45. Sisejkovic D, Merchant F, Reimann LM, Srivastava H, Hallawa
A, Leupers R (2021) Challenging the security of logic lock-
ing schemes in the era of deep learning: a neuroevolutionary
approach. J Emerg Technol Comput Syst 17(3):30

 46. Arp D, Quiring E, Pendlebury F, Warnecke A, Pierazzi F,
Wressnegger C, Cavallaro L, Rieck K (2022) Dos and don’ts
of machine learning in computer security. In: Proceedings of
USENIX Security Symposium

 47. Pilato C, Chowdhury AB, Sciuto D, Garg S, Karri R (2021)
ASSURE: RTL locking against an untrusted foundry. IEEE Trans
Very Large Scale Integr (VLSI) Syst 29(7):1306-1318

 48. Alrahis L, Patnaik S, Knechtel J, Saleh H, Mohammad B, Al-
Qutayri M, Sinanoglu O (2021) UNSAIL: thwarting oracle-less
machine learning attacks on logic locking. IEEE Trans Inf Foren-
sics Secur 16:2508–2523

 49. Becker GT, Regazzoni F, Paar C, Burleson WP (2013) Stealthy
dopant-level hardware Trojans. In: International Workshop on Cryp-
tographic Hardware and Embedded Systems (CHES), pp 197-214

 50. Alasad Q, Yuan J (2017) Logic obfuscation against IC reverse
engineering attacks using PLGs. In: IEEE International Confer-
ence on Computer Design (ICCD), pp 341-344

 51. Rezaei A, Gu J, Zhou H (2019) Hybrid memristor-CMOS obfus-
cation against untrusted foundries. In: IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pp 535-540

 52. Limaye N, Patnaik S, Sinanoglu O (2022) Valkyrie: vulnerabil-
ity assessment tool and attack for provably-secure logic locking
techniques. IEEE Trans Inf Forensics Secur 17:744–759

 53. Elnaggar R, Chakrabarty K (2018) Machine learning for hardware
security: opportunities and risks. In: Journal of Electronic Testing,
pp 183-201

 54. Liu W, Chang CH, Wang X, Liu C, Fung JM, Ebrahimabadi M,
Karimi N, Meng X, Basu K (2021) Two sides of the same coin:
boons and banes of machine learning in hardware security. In:
IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, pp 228-251

 55. Tan B, Karri R (2020) Challenges and new directions for AI and
hardware security. In: IEEE 63rd International Midwest Sympo-
sium on Circuits and Systems (MWSCAS), pp 277-280

 56. Darjani A, Kavand N, Rai S, Kumar A (2023) Discerning limita-
tions of GNN-based attacks on logic locking. In: Design Automa-
tion Conference (DAC), pp 1-6

 57. Li M, Khan S, Shi Z, Wang N, Yu H, Xu Q (2022) DeepGate:
learning neural representations of logic gates. In: ACM/IEEE
Design Automation Conference (DAC), pp 667-672

 58. Wang Z, Bai C, He Z, Zhang G, Xu Q, Ho T-Y, Yu B, Huang Y
(2022) Functionality matters in netlist representation learning. In:
ACM/IEEE Design Automation Conference (DAC), pp 61-66

 59. Yasaei R, Yu S-Y, Naeini EK, Faruque MAA (2021) GNN4IP:
graph neural network for hardware intellectual property piracy
detection. In: ACM/IEEE Design Automation Conference (DAC),
pp 217-222

 60. Chowdhury AB, Bhandari J, Collini L, Karri R, Tan B, Garg S
(2023) ConVERTS: contrastively learning structurally invariant
netlist representations. In: ACM/IEEE Workshop on Machine
Learning for CAD (MLCAD), pp 1-6

 61. Navada A, Ansari AN, Patil S, Sonkamble BA (2011) Overview
of use of decision tree algorithms in machine learning. In: IEEE
control and system graduate research colloquium, pp 37-42

 62. Quinlan JR (1986) Induction of decision trees. In: Machine learn-
ing, pp 81-106

 63. Berkeley Logic Synthesis and Verification Group. ABC: a system
for sequential synthesis and verification. http:// www. eecs. berke ley.
edu/ alanmi/ abc/

 64. Keras: deep learning for humans. http:// github. com/ fchol let/ keras/
 65. Khosla C, Saini BS (2020) Enhancing performance of deep learn-

ing models with different data augmentation techniques: a survey.
In: International Conference on Intelligent Engineering and Man-
agement (ICIEM), pp. 79-85

 66. Brglez F, Fujiwara H (1985) A neutral netlist of 10 combinational
benchmark circuits and a target translator in Fortran. In: IEEE
International Symposium on Circuits and Systems (ISCAS), pp.
677-692

 67. Yang S (1991) Logic synthesis and optimization benchmarks user
guide version 3.0. In: Microelectronics Center of North Carolina
(MCNC) International Workshop on Logic Synthesis

 68. NEOS: netlist encryption and obfuscation suite. http:// bitbu cket.
org/ kaveh shm/ neos/

 69. Davidson S (1999) ITC’99 benchmark circuits - preliminary
results. In: International Test Conference (ITC), pp 1125-1125

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://www.eecs.berkeley.edu/alanmi/abc/
http://www.eecs.berkeley.edu/alanmi/abc/
http://github.com/fchollet/keras/
http://bitbucket.org/kavehshm/neos/
http://bitbucket.org/kavehshm/neos/

	Machine Learning-Based Security Evaluation and Overhead Analysis of Logic Locking
	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Logic Locking Defenses
	2.1.1 Pre-SAT Defenses
	2.1.2 Post-SAT Defenses

	2.2 Logic Locking Attacks
	2.2.1 Oracle-Guided SAT-Based Attacks
	2.2.2 ML-Based Attacks

	3 Shortcomings of Current ML Models
	3.1 A Critique of GNN-Based Attacks in Logic Locking
	3.2 A Critique of Using Hamming Distance as Key Accuracy

	4 Logic Locking Defensive Frameworks
	4.1 MADELINE: DT Model for Locking Security Evaluation
	4.1.1 Data Gathering and Labeling for the DT Model
	4.1.2 Building the DT Model
	4.1.3 Testing the DT Model

	4.2 CoLA: CNN Model for Low-Overhead Locking Assignment
	4.2.1 Data Gathering, Labeling, and Augmentation
	4.2.2 Training the CNN Model
	4.2.3 Evaluating the CNN Model

	5 Experimental Results
	5.1 MADELINE Evaluation
	5.2 CoLA Evaluation
	5.3 MADELINE and CoLA Validation on Unseen Locking
	5.4 MADELINE and CoLA Validation on New Benchmark and Unseen Locking

	6 Conclusion
	References

