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Abstract
Piracy and overproduction of hardware intellectual properties are growing concerns for the semiconductor industry under 
the fabless paradigm. Although chip designers have attempted to secure their designs against these threats by means of logic 
locking and obfuscation, due to the increasing number of powerful oracle-guided attacks, they are facing an ever-increasing 
challenge in evaluating the security of their designs and their associated overhead. Especially while many so-called “prov-
able” logic locking techniques are subjected to a novel attack surface, overcoming these attacks may impose a huge overhead 
on the circuit. Thus, in this paper, after investigating the shortcomings of state-of-the-art graph neural network models in 
logic locking and refuting the use of hamming distance as a proper key accuracy metric, we employ two machine learning 
models, a decision tree to predict the security degree of the locked benchmarks and a convolutional neural network to assign 
a low-overhead and secure locking scheme to a given circuit. We first build multi-label datasets by running different attacks 
on locked benchmarks with existing logic locking methods to evaluate the security and compute the imposed area overhead. 
Then, we design and train a decision tree model to learn the features of the created dataset and predict the security degree 
of each given locked circuit. Furthermore, we utilize a convolutional neural network model to extract more features, obtain 
higher accuracy, and consider overhead. Then, we put our trained models to the test against different unseen benchmarks. 
The experimental results reveal that the convolutional neural network model has a higher capability for extracting features 
from unseen, large datasets which comes in handy in assigning secure and low-overhead logic locking to a given netlist.

Keywords Logic locking · Obfuscation · SAT attack · Machine learning · Labeling · Decision tree · Convolutional neural 
network · Graph neural network

1 Introduction

Due to fabless manufacturing, it is critical for the semicon-
ductor industry to protect hardware Intellectual Properties 
(IPs) from malicious threats. On one hand, the hardware 
design costs are high, and the designers need to protect 
their Integrated Circuits (ICs) from piracy. IC designers, 
on the other hand, are in danger of not getting enough rev-
enue for their products due to unauthorized overproduc-
tion by untrusted third-party foundries. To overcome these 

malicious threats, an IC can be locked by adding extra gates 
controlled by secret key inputs [1–4]. In this case, the circuit 
works properly only when the correct key is being inserted; 
otherwise, it malfunctions. One naive attempt to attack the 
logic-locked circuits is to exhaustively search and check 
all the possible key inputs with the help of an activated 
IC bought off the market. While this brute-force attack is 
exponentially time-consuming with respect to the key size, 
there are more efficient oracle-guided attacks that can find 
the correct key in a relatively short time with the help of a 
Boolean satisfiability (SAT) solver. These attacks can find 
either an exact key [5] or an approximate key with low error 
[6, 7] but they may still become stuck due to a specific lock 
design or time and memory limits [8].

After proposing several oracle-guided SAT-based 
attacks, the logic locking research field has been growing 
with sequences of attacks [9–15] and defenses [8, 16–35]. 
While this game continues, the job of the defender requires 
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more effort since if a logic locking method is secure against 
all but one attack, the defender is doomed! Thus, one basic 
question becomes more critical than before: how secure is a 
newly proposed logic-locked design? Please note that from a 
hardware designer’s perspective, we consider oracle-guided 
attacks, which are stronger than oracle-less attacks. If a 
scheme is secure against a strong attacker model, most likely 
it is also secure against a weaker model. Additionally, the 
ultimate goal of logic locking and obfuscation is to provide 
security for an efficient and precious design from piracy 
and overproduction, and it is implausible and cost-ineffec-
tive if the locking overhead is beyond a small, reasonable 
amount. So, considering the fact that there might be more 
than one locking method to secure the design effectively, 
another noteworthy question comes up: how much overhead 
is imposed by locking? In other words, a reliable framework 
is required to demonstrate which type of locking works best 
for each circuit with the minimum overhead.

In addition, recent machine learning (ML) attacks on 
logic locking demonstrate the presence of structural and 
functional leakage in state-of-the-art locking schemes, 
which has been disregarded by the traditional understand-
ing of security [36]. While all of these initiatives are on 
the attacker side [37–45], no comprehensive study has been 
done on the opportunities that ML-based analysis might give 
for the hardware designers to protect their ICs against piracy 
and overproduction. We believe that with the help of ML, 
hardware protection becomes easier, more proactive, and 
more affordable. However, it can only do so if the underlying 
data gives a comprehensive view of the environment [46].

Thus, in this paper, we first build a multi-label dataset in 
both text and image formats by running different attacks on 
benchmarks locked with existing logic locking methods to 
evaluate the Error Rate (ER) of the reported key and com-
pute the imposed overhead. Then, we propose an ML-based 
framework to assess the security of a given logic-locked 
circuit against various attacks. From a hardware designer’s 
perspective, we aim to assign a secure yet affordable locking 
method to protect ICs in a fabless paradigm. Specifically, 
we examine the effectiveness of two ML models: the deci-
sion tree (DT) model, which extracts features from text data, 
and the convolutional neural network (CNN) model, which 
extensively finds features of various circuits from image-
based data. With the help of resynthesis and data augmenta-
tion, the ML models can be trained on thousands of samples, 
gain high accuracy, and become noise-resilient.

In addition, recent studies [39, 44] have shown a promis-
ing direction in the advancement of logic locking “attacks” 
by employing graph neural networks (GNN). GNN is a strict 
generalization of CNN, yet it consumes more power and 
resources to run the algorithm, get trained, and predict the 
labels. In this study, we explore the opportunities that DT 
and CNN models would provide for improving logic locking 

“defenses.” We also discuss the shortcomings of state-of-
the-art GNN models in logic locking and refute the use of 
hamming distance (HD) as a proper parameter for key accu-
racy. The main contributions of this work are as follows:

• Discussing the shortcomings of current GNN models as 
well as the HD parameter in logic locking modeling and 
evaluation;

• Developing a multi-label security and overhead degree 
dataset consisting of more than 10,000 benchmarks 
locked with distinctive logic locking methods and tested 
under different oracle-guided attacks;

• Building and training a basic DT-based model for security 
evaluation of logic-locked circuits and an accurate CNN-
based model for assigning a secure and low-overhead logic 
locking method to given circuits with suitable fairness 
checking and hyperparameter tuning;

• Testing the created ML models on unseen logic-locked 
benchmarks and evaluating the models’ security and 
overhead prediction accuracy.

The rest of the paper is organized as follows: Section 2 
explores the background and provides a literature review 
on logic locking attacks and defenses. Section 3 discusses 
the shortcomings of state-of-the-art GNN-based models in 
logic locking and argues the reason behind choosing ER 
as a more meaningful labeling parameter over HD. Then, 
Section 4 proposes two ML-based models for logic locking 
security evaluation and overhead analysis. Our extensive 
experimental result is given in Section 5. Finally, conclu-
sions and future directions are discussed in Section 6.

2  Background and Related Works

In this section, we review the background of logic locking 
defenses categorized into pre-SAT and post-SAT methods 
and discuss the logic locking attacks grouped into oracle-
guided SAT-based and ML-based attacks.

2.1  Logic Locking Defenses

Logic locking defenses can be divided into pre-SAT 
approaches such as xor-based locking [1], mux-based lock-
ing [2], and/or locking [3], lut-based locking [4] and post-
SAT approaches such as SAR-lock [16], Anti-SAT [17], 
TTLock [18], CAC [19], RND-cycle [20], R &D-cycle 
[21], BLE [8], ASSURE [47], and UNSAIL [48] meth-
ods. In all of these logic locking schemes, the correct key 
must be put in a tamper-proof memory or integrated in the 
circuit [49–51] soon after the fabricated ICs return from 
the foundry.
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2.1.1  Pre‑SAT Defenses

In xor-based locking [1], the key bits can be matched with 
a combination of random buffers and inverters. After that, 
key bit controlled xor gates are used to replace the chosen 
buffers and inverters. If an xor gate is hiding a buffer, the 
correct key bit is “0” while if it is hiding an inverter, the 
correct key bit is “1.”

In addition, in mux-based locking [2], random signals are 
chosen and replaced with 2-1 muxs with the real signal and 
random dummy ones as inputs and key bits as the selectors. 
The correct key here must select the terminal to which the 
real signal is connected and avoid the dummy signal.

The and/or locking strategy suggested in [3] inserts key-
controlled and/or gates in place of signals with a predeter-
mined imbalanced probability and a minimum slack.

The lut-based locking [4] is being implemented to IC 
prefabrication. The goal is to separate the inputs from the 
outputs so that every path from inputs to outputs passes 
through a barrier. The key inputs are basically the values 
stored in the lookup tables.

2.1.2  Post‑SAT Defenses

SAR-Lock [16] and Anti-SAT [17] are post-SAT locking 
solutions that secure the correct key from the attacker by 
increasing the number of Distinguishing Input Patterns 
(DIPs) that may be used to prune a wrong key. In this situ-
ation, the original SAT attack [5] will take exponentially 
more iterations to find the correct key with respect to the 
input size. In [18] TTLock is proposed to modify the design 
for exactly one input pattern. The modified design is then 
corrected using a key-controlled restore unit. Removing the 
restore unit results in a modified design instead of the origi-
nal design in SARLock and Anti-SAT. Another approach 
called Corrupt-and-Correct (CAC) [19] corrupts the original 
design using hard-coded and-trees and corrects the modified 
functionality using a generic correction unit.

In [20], random cycle insertion (RND-cycle) is pre-
sented, which inserts fake cycles in the circuit with two 
criteria. First, each cycle must have many entrance points. 
Second, each cycle must include at least two removable 
edges. In addition, dummy and real cycle insertion (R 
&D-cycle) [21] turns an acyclic combinational circuit 
to a cyclic circuit before cyclically locking it. First, for 
each real cycle, a 2-1 mux is established, with one input 
connected to the real feedback signal and the other input 
being a random signal along the cycle’s feed-backward 
route. In other words, picking one of the mux’s inputs 
causes the circuit to be cyclic, while selecting the other 
maintains it acyclic. The correct key bit must pick the real 
feedback in this scenario. Then some random signals are 
chosen, each of which serves as an input to multiple gates. 

After that, for each of those signals, an extra 2-1 mux is 
inserted. Following that, for one of the mux’s inputs, a 
random dummy feedback is added via the feed-forward 
line, while the other input is linked to the original selected 
signal. The correct key bit must prevent the fake feedback 
in this case.

As an advanced post-SAT method, Bilateral Logic 
Encryption (BLE) [8], uses obfuscation and integrated 
locking on a sensitive component of a circuit. Using this 
method, the security impact, including the structural com-
plexity and the logic complexity, gets transmitted to the 
entire circuit, whereas the performance overhead is less 
than the locking of the whole circuit.

As one of the most recent state-of-the-art locking 
methods, ASSURE [47] aims IP protection approach at 
the Register Transfer Level (RTL). This Electronic Design 
Automation (EDA)-tool-independent locking approach 
obfuscates the ICs before logic synthesis. By employing 
three different techniques, ASSURE obfuscates control 
branches, arithmetic operations, and constants, which 
leads to providing indistinguishable RTL designs.

Another recent strategy is called UNSAIL [48] which 
focuses on providing a combinational locking method with 
a low area overhead on a structure level to confuse ML 
attacks. By inserting unsuitable data during the learning 
stage of an ML attack, UNSAIL misleads the operation, 
and the ML model predicts the labels incorrectly. As one 
of the scopes of our work is to include the area overhead 
in the labeling process, we use UNSAIL in the verifica-
tion stage. It is worth mentioning that both ASSURE and 
UNSAIL have considered an oracle-less attacking envi-
ronment. Also, a holistic security diagnostic tool called 
Valkyrie is proposed [52] to identify vulnerabilities in the 
considered logic locking techniques from the standpoint 
of structural attacks. Our focus on this paper is, however, 
on oracle-guided logic attacks.

2.2  Logic Locking Attacks

Pre-SAT Hill Climbing attack [9] selects a random key 
candidate and progressively moves it closer to the cor-
rect key depending on observed test patterns guided by 
the hill climbing search. Randomly chosen key bits are 
toggled one by one at each iteration, and the current key 
combination is then subjected to a random test. To mini-
mize disparities between actual and expected responses, 
a key bit value of “0” or “1” is selected. There are also 
oracle-guided attacks such as SAT [5], Double DIP [7], 
AppSAT [6], CycSAT [11], BeSAT [12], and IcySAT [14] 
as well as ML-based attacks such as GALU [40], SAIL 
[37], CutSAIL [42], UNTANGLE [43], OMLA [44], and 
GNNUnlock [39].
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2.2.1  Oracle‑Guided SAT‑Based Attacks

The original SAT-based attack [5] repeatedly finds unique 
input patterns called DIPs, to exclude equivalence classes of 
keys. During this process, the attack finds an exact key value 
that matches all feasible input/output patterns. Although the 
SAT-based attack ensures finding the correct key in pre-SAT 
logic locking methods, finding the correct key may take expo-
nential time in the case of post-SAT locking approaches.

To attack post-SAT locking approaches like SAR-Lock 
[16], Double DIP [7] is proposed to repeatedly find two DIPs 
(instead of one) in each iteration and prune incorrect keys.

Finding the key of a locked circuit considering the exact-
ness limitation of the SAT-based attack could lead to a huge 
amount of memory and time consumption, which is not ideal 
for real-world problems. AppSAT [6] uses an approximate 
flow to find the probably approximate-correct key. Random 
sampling and a user-defined error threshold can be used to 
establish the degree of approximation.

In order to attack RND-cycle logic locking [20], an 
oracle-guided attack called CycSAT [11] is proposed. Cyc-
SAT assumes that there exists at least one correct key for 
which no structural cycle occurs in the circuit. The attack 
first calculates a formula, presuming the circuit has no 
sensitizable cycles, and then performs the original SAT-
based attack on the constrained locked circuit.

While CycSAT uses structural analysis to find all the pos-
sible cycles in a cyclically locked circuit, BeSAT [12] pur-
sues a behavioral method to unlock cyclic logic locking with 
the goal of reducing the missing cycle problem of CycSAT.

Finally, IcySAT [14], as another SAT-based attack on 
cyclic circuits, has been introduced that follows a cycle 
unrolling approach, contrary to CycSAT and BeSAT, which 
follow a cycle breaking strategy.

2.2.2  ML‑Based Attacks

Recently, the application of Artificial Intelligence (AI) and 
especially ML in hardware security has attracted attentions 
[53–55], and some studies [37, 39, 40, 42–44] have pro-
posed ML-based attacks on logic locking methods. While 
all of these ML frameworks are in favor of the attackers, no 
research has been conducted on the potential that ML-based 
analysis may provide for hardware designers to secure their 
ICs against piracy and overproduction.

In [40], an ML attack is introduced to unlock logic-locked 
circuits while reducing the run-time overhead of unlocking 
logic. With the help of genetic algorithms, circuit unlocking 
is converted into an optimization problem to find the key. 
At each stage, less probable key sequences are eliminated to 
gradually arrive at the correct key.

In [37], a structural ML attack calls structural analysis 
using machine learning (SAIL) retrieves the design of an 

obfuscated circuit on a gate-level structure. Using circuits 
as inputs, the work utilizes a random forest ML model for 
extracting features. This oracle-guided ML attack mainly 
aims at those structural obfuscating techniques that trans-
form the circuits by small, local changes.

While SAIL mainly focuses mainly on the xor-based 
locked circuits, CutSAIL [42] infers missing k-cuts from 
the neighboring logic. The work basically predicts the func-
tionality of the embedded, missing parts of an obfuscated 
circuit. By using a proper neighbor encoding notation such 
as adjacency lists or adjacency matrices, the circuit informa-
tion gets fed to a GNN model, thereby capturing the topol-
ogy of the circuit.

In [43], researchers have presented an oracle-less link pre-
diction attack based on GNN called UNTANGLE that learns 
the structure of gates in an obfuscated netlist. First, by map-
ping the key-extraction process as a link prediction problem, 
the attack model infers concealed links in the obfuscating 
blocks. Then, thanks to GNN, it learns the structure of the 
circuit, the features of the gates, and gradually the features 
of the links.

In addition, in [44], a GNN-based attack called Oracle-
less Machine Leaning Attack (OMLA) is proposed, which 
employs subgraph classification to find the key bit values. 
OMLA explores the obfuscated netlist to extract small 
subgraphs for the key gates. The process of finding the 
subgraphs continues until the enclosing subgraphs capture 
the features related to the key bit values of the key gates. 
When it comes to labeling, OMLA considers the key bit 
value as the label for a subgraph. Then, each of the labeled 
subgraphs gets fed to a GNN model, letting it learn the 
characteristics associated with the circuit and predict the 
key bit values. This work is synthesis-tool independent, 
which makes it applicable to handling circuits synthesized 
by various scripts.

Unlike OMLA, GNNUnlock [39], utilizes GNN for node 
classification of circuits. The dataset for GNNUnlock is 
multiple obfuscated circuits of a benchmark with different 
key sizes. Using a set of edges and nodes to respectively 
represent wires and gates, the model uses adjacency matrices 
corresponding to the circuit as input to the GNN model.

3  Shortcomings of Current ML Models

In this section, we offer a critical view of the current GNN-
based models in logic locking and show why HD is not 
enough to be considered a key accuracy metric. The work 
in [56] has also investigated other limitations of GNN mod-
els used for logic locking attacks and demonstrated how, by 
harnessing these limitations, the circuits can be protected 
against such attacks.
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3.1  A Critique of GNN‑Based Attacks in Logic 
Locking

Considering n, m, and k be the size of the input, out-
put, and key respectively, we define the original cir-
cuit as � ∶ {0, 1}n → {0, 1}m , and the locked circuit as 
� ∶ {0, 1}k × {0, 1}n → {0, 1}m in which there is a k-bit 
cor rect key K∗ = (k∗

0
, k∗

1
, ..., k∗

k−1
) ∶ {0, 1}k  such that 

� (X) = �(X,K∗).
Although, graph representation preserves the topology of 

the circuit, using an undirected graph for netlist represen-
tation is one of the shortcomings of current GNN models 
because the inputs/outputs neighborhood of the netlist will 
be indistinguishable. In addition, current GNN-based attacks 
cannot effectively distinguish the difference between xor-
based controlled key gates and xnor-based controlled key 
gates due to a lack of consideration of circuit functionality.

Let Ka = (ka
0
, ka

1
, ..., ka

k−1
) be a k-bit reported key by the 

attack, the hamming distance (HD) of Ka and K∗ can be 
defined as the sum of the bitwise xor of the two keys:

Proposition 1 GNN-based attacks can report an approxi-
mate key Ka of the locked circuit � in which HD(Ka,K∗) is 
very small.

Counterexample 1 We consider OMLA [44] as one of the 
GNN-based attacks, in which its prediction accuracy has 
been shown to be on average 80%. In means, for a reported 
key Ka , it is expected to predict almost 80% of the key bits 
correctly (i.e., HD(Ka,K∗) = 0.2k ). If we replace all the xor 
gates with xnor in the benchmarks with xor-based locking 
[1] and push the inverters to the fanouts, the new correct key 
will be the complement of the previous one. Figure 1 depicts 
an example of such a transformation on one key bit. How-
ever, the attack accuracy drops significantly to an average 
of 56% (i.e., HD(Ka,K∗) = 0.44k ) which is not much better 
than reporting a random key.

The above counterexample implies that Proposition 1 is 
wrong and that GNN models are highly dependent on the 

(1)HD(Ka,K∗) =

k−1
∑

i=0

ka
i
⊕ k∗

i
∶ {0, 1, ..., k}

specific gates in the circuit but not on their dependencies 
with each other. In other words, they cannot distinguish 
between two circuits with different topologies that have the 
same functionality.

Takeaway 1: GNN-based attacks on locked circuits 
with the same functionality but different structure do 
not necessarily outperform reporting a random key.

It is worth mentioning that to address some of the short-
comings of GNNs, in [57] obtaining a general and effective 
neural representation of circuits is discussed. In addition, 
in [58], a netlist representation learning framework is pro-
posed to effectively acquire generic functional knowledge 
from netlists. Further, an automated framework is proposed 
in [59] that generates the data-flow graph for circuits such 
that the proximity in the embeddings indicates similarity 
between circuits. Also, in [60], a self-supervised netlist 
learning method is proposed that generalizes well using 
one-shot RTL of a design to recover the functionality of 
obfuscated designs.

3.2  A Critique of Using Hamming Distance  
as Key Accuracy

For a given key K of the locked circuit � , we can define its 
error rate ER(K) as the number of input patterns in which 
� (X) ≠ �(X,K) , divided by all the input patterns (i.e., 2n ). 
Based on this definition ER(K∗) = 0 . The important note 
here is that the ER value is intrinsically based on the func-
tionality of the circuit, rather than its topology.

Proposition 2 The smaller the HD(Ka,K∗) , the more 
similar the locked circuit � under Ka functions to the 
original circuit � .

Counterexample 2: Consider the locked circuit in Fig. 2 
with a key size of k − 1 . We increase the key size to k by 
xoring one of the outputs with additional key bit kk−1 . In 
this case, there is a key Ka where just the key bit kk−1 is 
incorrect and all the other key bit values are the same as 
K∗ . In other words, while the HD of Ka is very low (i.e., 
HD(Ka,K∗) = 1 ), the locked circuit � under Ka outputs dif-
ferently than the original circuit �  in 100% of the input pat-
terns (i.e., ER(Ka) = 1).

i0
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i2
i3

o0

i0
i1

k0

i2
i3

o0

i0
i1

k0

i2
i3
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Fig. 1  Counterexample for the accuracy of GNN-based attacks
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Therefore, Proposition 2 is wrong, and HD does not cap-
ture the functionality of the circuits and thus cannot be a 
good metric for key accuracy. We believe incorporating ER 
into the training dataset can be a better metric in this regard.

Takeaway 2: A key of the locked circuit with a small 
hamming distance to the correct key does not necessarily 
outperform a random key with a large hamming distance.

4  Logic Locking Defensive Frameworks

In this section, we utilize two distinct ML algorithms to 
extract features for evaluating the security degree of the 
locked benchmarks as well as assigning a secure and low-
overhead logic locking method to a given circuit. The DT-
based model examines the text dataset, while the CNN-based 
model extracts features from the image dataset.

4.1  MADELINE: DT Model for Locking Security 
Evaluation

In this section, we propose MADELINE, a multi-label deci-
sion tree based machine learning model for logic locking 
security evaluation. The process of using a DT-based 
model is categorized into three main phases as shown in 
Fig. 3. In the first phase, we gather and clean data, i.e., we 
run different attacks on distinct locking techniques, and 

based on finding the exact key, an approximate key, or no 
key, we label the data. Now that each locked benchmark 
has a specific label, we move on to the next phase, which is 
building MADELINE. In this phase, we preprocess the data 
and randomly allocate some to the training set and the rest 
to the testing and evaluation sets. With the help of hyperpa-
rameter tuning, we improve the accuracy of the model and 
prevent it from getting overfit. Last but not least, MADE-
LINE is fully trained and ready to predict security labels 
of unseen locked benchmarks.

4.1.1  Data Gathering and Labeling for the DT Model

Some attacks are approximate in nature, meaning they find 
an approximate key rather than the exact correct key. To 
show whether or not the found key is exact, we refer to the 
ER of the key, which has been defined and discussed in Sec-
tion 3.2. The attack is considered successful if the reported 
key has a low ER with respect to the input size. Also, some 
attacks perform well on some benchmarks while they cannot 
find the correct key for other benchmarks considering the 
time and memory limits.

We label data via two steps, as shown in Algorithm 1. 
First, we run various attacks on the benchmarks locked with 
different logic locking methods, approximately evaluating 
the correctness of the reported key (if any) using random 
test patterns and assigning a unique label for every bench-
mark under each attack. If the ER of the reported key is “1,” 
then the locked benchmark is considered “safe.” Also, if a 
timeout happens, i.e., if it takes more than one day with no 
reported key, the benchmark is labeled “safe” too. If the 
attack returns a key with an error rate of “0.3” to less than 
“1,” the locked benchmark is considered “semi-safe,” imply-
ing that the locking method can protect the circuit to some 
extent. If the found key is equivalent to the correct key or the 
ER of the reported key is between “0” and “0.3,” it is labeled 
as “unsafe.” It should be noted that some attacks have higher 
priorities compared to others. For instance, if the SAT attack 
[5] could find the key, the locked benchmark is definitely 
“unsafe,” but if AppSAT [6] finds a key, we should test the 
key and find the approximate ER of the key.

Locked

Circuit

i0
i1

in-1
k0

k1

kk-1

o0

o1

Om-1

O’m-1

Fig. 2  Counterexample for hamming distance as a key accuracy met-
ric
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Then, in order to find the final label of each logic-locked 
benchmark, if at least one of the attack methods could find the 
key, the logic-locked benchmark is “unsafe.” If none of the labels 
are “unsafe” but at least one of the labels is “semi-safe,” the bench-
mark is labeled as “semi-safe,” and if all of the labels are “safe” 
the whole scheme is “safe.” With the data being ready, we can 
move on to phase 2, which is building and training MADELINE.

Algorithm 1  Labeling algorithm

Algorithm 2  Decision tree algorithm

4.1.2  Building the DT Model

MADELINE identifies the strategy of all the attributes of 
labeling, using an ML model based on DT [61] as shown in 
Algorithm 2. To build the DT, we define three major parts: 
a decision node gets the unlabeled data; a chance node pre-
dicts the probability of the potential label; and an end node 
represents the final labeling decision for the input data.

To build the DT, we should use two functions: Entropy and 
InformationGain [62]. In building a DT, our goal is to find the 
best-split option for a given blended data. This splitting process 
continues until the data is not mixed anymore. The Entropy 
function is being used in evaluating disorder and learning how 
blended a series of data is. At each stage, if the splitting point 
lowers the chaos of the dataset, entropy decreases.

During the splitting process, we have two sides, and for 
each side, we need to measure the entropy. Then, by sub-
tracting the previous entropy from the current entropy, the 

InformationGain function will learn how well the splitting 
is, i.e., how much information each side gained. A posi-
tive result means the split learned something, which leads 
to lower entropy.

As nodes are being defined, the tree is ready to be trained 
so that it can learn features of the labeled data. Well-training 
a machine learning model requires some provisions. First, 
data allocation should be fair, i.e., data distribution in the 
train set and test set should cover almost all the features. 
Second, data proportion to the train and test sets should be in 
a way to avoid overfitting and underfitting. Overfitting refers 
to the term when a model works well on the training dataset 
but poorly on the test dataset. Underfitting happens when a 
model works poorly on both the train and test datasets.

To avoid the aforementioned problems, first, we perform 
fairness checking. Fairness checking is an important step 
in allocating data to the training, test, and evaluation sets. 
It assures that the data distribution among all the bench-
marks and locking methods is as unbiased as possible and at 
least one benchmark with a certain locking exists in all the 
datasets. Although data allocation to each set is random, we 
preprocess the data at each set to guarantee fairness. If we 
skip the fairness checking step, it is possible that the model 
will not learn some data features. In this situation, the train-
ing accuracy would be reasonable, as the model is working 
well on the learned features, but the test accuracy could get 
noticeably lower as some features in the test set may not have 
been examined in the training phase.

Then, we perform hyperparameter tuning. During the hyper-
parameter tuning, we select the best set of hyperparameters to 
make sure the model is working properly in both the training set 
and the test set. To achieve this goal, we compare the accuracy 
of the training and testing sets using various hyperparameters 
to find the best hyperparameter set, optimize the model, and get 
the highest possible accuracy of the model, both in the training 
phase and the test phase. The hyperparameters of a DT include 
maximum depth, minimum split samples, minimum leaf sam-
ples, and maximum features. Maximum depth is an integer that 
defines the maximum intended depth of the DT. The greater the 
maximum depth, the more complicated the tree. With a low 
depth number, models do not have enough freedom to learn 
the features of the data. For instance, if we have ten labels for a 
dataset, the maximum depth of one would not help the tree learn 
enough features about the data. Minimum split samples specify 
the minimum number of samples required to split an internal 
node, and minimum leaf samples specify the minimum number 
of samples required to be at a leaf node. Choosing a low num-
ber for the two latter parameters helps the model differentiate 
well between samples. Maximum features refer to the number 
of features to consider when looking for the best split. Among 
the mentioned hyperparameters, we set the minimum number 
of leaf samples to be one, as we want the end nodes to have 
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one sample, and we do not set any particular number for the 
maximum features so that the model will consider all features 
available to make the best split.

To get the best accuracy from the model, we assign dif-
ferent values to the minimum sample size and maximum 
depth, to learn which combination helps the model get the 
highest possible accuracy, both with the training set and 
the test set. As we have three labels as “safe,” “semi-safe,” 
and “unsafe,” we get the accuracy of the model with the 
maximum depth being set as one and two. Moreover, we 
allocate a different percentage of the data to the train set 
and test set, to get the desired model efficiency. Finally, 
as we need to evaluate the effect of minimum split sam-
ples, we examine the model with split samples equal to the 
number of labels and equal to the test size.

4.1.3  Testing the DT Model

During the training process, the model extracted features from 
the benchmark, and related the assigned label to that. Once the 
model is trained, learned all the features, and tested well on the 
train set and test set, it is ready to predict labels of unseen data.

To test the model, we need to follow the following 
steps. The first step of the testing phase is data preproc-
essing. As the data is new and has not been included in 
the training phase, we need to fully examine it to make 
sure the structure is the same as the training dataset and 
known to the model. For example, if the new benchmark 
contains new gates or components that did not exist in the 
training set, the model cannot predict the correct label. In 
such cases, if the new data contains unknown components, 
we should re-train the model with benchmarks containing 
those specific components.

Secondly, we should convert the new benchmarks to 
the same format as the training dataset. Next, as soon as 
the data is ready, we can feed it to our model, let it extract 
features, and compare those with the learned features of 
the training dataset. Based on the comparison of features, 
the model can predict the label of the new benchmark. 
This process repeats for each attack method, i.e., the model 
examines the new data under all the predefined attacks and 
extracts labels for them. Finally, the model evaluates all 
the attack labels of the benchmark to give the final label 
of the locking technique.

4.2  CoLA: CNN Model for Low‑Overhead  
Locking Assignment

In this section, we propose CoLA, a convolutional neural net-
work logic locking assignment model that finds a low-area-
overhead secure locking method for a given netlist. First, we 
gather data and use the area overhead and the ER of each 

locked benchmark to label the data and make them ready for 
training. Then, we train CoLA on the augmented labeled data 
in order to extract their features. Finally, the trained model 
is ready to assign a low-overhead logic locking method to 
new, unseen data. Moreover, extracted weights of CoLA can 
be used for other CNNs with different structures. The CoLA 
framework is shown in Fig. 4.

4.2.1  Data Gathering, Labeling, and Augmentation

When it comes to training the neural network, a suitable dataset 
is needed so that the CNN model can learn many features of 
the circuit for a high-accuracy prediction. Data labeling has two 
phases. First, we need to find the ER of each locking technique 
for each benchmark. Second, we need to export the area over-
head of the locked benchmarks. Based on the fact that not all 
the low-overhead locking methods can provide a secure design, 
we need to define a parameter that relies both on the area over-
head and the security of the locking method.

Key Correctness Value (KCV): Approximate attacks 
find keys with an ER between 0 and 1, which has been cal-
culated by random sampling of the oracle and the locked 
benchmark under the reported key. Along the same lines, we 
define a reported key’s KCV as 1 − ER . From the defender’s 
perspective, the higher the ER (i.e., the lower the KCV), the 
more secure the locking technique.

Locking Area Overhead (LAO): We define LAO as the 
area overhead of the locking technique on the original circuit.

To allocate a parameter that mutually considers the effects 
of KCV and LAO, we define Low-overhead & Secure Label 
(LSL) as the following:

where � is the weighted coefficient with an amount between 
0 and 1 to put emphasis on the key correctness side or the 

(2)LSL = �LAO + (1 − �)KCV
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area side. Moreover, since acceptable costs must be defined 
based on customer and industry needs, LSL provides this 
flexibility. Based on Eq. 2, among all the predicted labels of 
a model, the lowest LSL is the best one, which means that 
the chosen locking technique has a trade-off between the 
low KCV (i.e., high security) and the low LAO (i.e., low 
area). As a circuit has multiple ERs because of the usage 
of different attack methods, we use the lowest ER for Eq. 2 
to account for the highest vulnerability of a locking method 
against any of the attacks.

While thousands of samples are needed to efficiently 
train a CNN, publicly available logic-locked benchmarks 
are limited. As our CNN model needs image data to get 
trained, we can use different layouts of each benchmark 
to augment our data. To do so, we convert the .BENCH 
benchmarks into Verilog using the ABC tool [63]. Then, 
using different routing settings, we export 15 different 
layouts for each benchmark in terms of the structure of 
the layout, and the positions of the elements. As in our 
work, the structure of the layout matters, we use different 
layouts for the same functionality with the help of various 
resynthesis options. The different layouts are, including 
but are not limited to, showing simplified logic, grouping 
all related nodes, showing registers without fan-outs, and 
enabling global net routing. As shown in Fig. 5, to get even 
more data, we apply data augmentation techniques avail-
able in Keras [64] such as noise injection, random bright-
ness, random flip, and rotating, to name a few [65]. As a 

result, we can get thousands of different layouts as input 
data to CoLA. This data augmentation helps our model to 
preserve its accuracy in case of noise injection, such as 
various gate positions.

The CNN model needs a training dataset and a testing 
dataset to get trained and tested. With the train dataset, 
the CNN model learns features, and with the test dataset, 
it tests the model’s functionality. We randomly allocate 
10% of the gathered data to the test set and the rest of 
it to the train set. The original input size of each image 
data ranges from 800 × 800 pixels in smaller benchmarks 
to 4000 × 4000 pixels in larger benchmarks. To use a 
decreased size of data suitable for the memory and pro-
cessing resources available to us, we convert all the images 
to a size of 250 × 250 pixels, which is small enough to feed 
to the model, and large enough to preserve the structure 
and be readable for the model.

4.2.2  Training the CNN Model

A CNN is a framework that generally gets applied to explore 
visual data in the form of images. CNNs commonly use the 
shared-weight architecture of the convolution filters that 
slide along input data images with a pre-defined depth and 
provide a set of extracted features known as feature maps. 
A CNN’s key benefit is that, if defined properly without 
overfitting and underfitting, it can adapt well to the dataset 
and give pretty accurate results on the unseen data as well.

Fig. 5  Visual examples of data augmentation a original, b blur, c flip, d noise, e sharpen, and f rotation
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Each CNN model should have enough nodes in each 
layer to understand features comprehensively. Also, the 
CNN model should be deep-enough, i.e., should have 
enough numbers of layers, to extract as many features as 
possible. In this work, we structure a CNN with five con-
volution layers for feature extraction, each following with a 
maximum pooling layer, and three dense layers, also known 
as fully connected layers, for classification. The number 
of nodes in the last dense layers is equal to the number of 
labels. Each convolution layer except the last one uses the 
LeakyReLU activation function with an alpha parameter 
equal to 0.01. LeakyReLU returns all the positive numbers 
to their own amount, and all the negative numbers to 0.01 
of their amount. The accuracy of the model, in the training 
and validation phases, depends on many aspects such as the 
size of the dataset, the number of layers, and the size of the 
pooling layers. With the help of hyperparameter tuning, i.e., 
increasing the number of weights, changing the size of the 
pooling layers, and increasing the number of layers, we can 
increase the model’s accuracy while avoiding overfitting. 
The structure of CoLA and its layers is shown in Fig. 6.

4.2.3  Evaluating the CNN Model

The training phase is an offline phase, which means users 
have access to capacious memory as well as enough tim-
ing. So, training a roughly large model, like CoLA, will not 
cause any timing or resource problems. But when it comes 
to the validation phase, which is an online phase, the size 
of the model and dataset affect the execution time, as well 
as the consumed memory. So, we propose to use a quan-
tized version of CoLA for the validation phase. Hence, we 
can get high accuracy of the model, while consuming fewer 
resources. A quantized model uses less memory and pro-
cesses the computation faster.

In this regard, if the majority of the numbers fall within 
the range we demand, we will use a lower bit representation 
to represent input, weights, and feature maps of the CNN 
model. For instance, if the original CNN model uses p bit 
numbers to compute the result, the quantized version uses 
q bit numbers where q < p . A CNN uses multiplication and 
addition to compute the results. So it is possible that the 
sum and product of two q bit numbers represent numbers 
larger than q bits, as the sum of two q bit numbers is a q + 1 
bit number, and the product of two q bit numbers is a 2q bit 
number. To avoid this issue and keep the CNN model quan-
tized to q bit, we use the quantization function at the product 
of each computation process and before feeding the number 
to the next stage of computation In the case of overflow and 
underflow in the quantization process, we assign the highest 
and lowest range demand, respectively.

5  Experimental Results

In this section, we study MADELINE and CoLA, discuss 
each methodology, examine the results, and discuss the 
advantages and disadvantages of each model. We imple-
ment MADELINE and CoLA on an Intel Core i7-10,750 H 
CPU, with a RAM size of 16 GB. To provide appropriate 
data for both of the models, we first need to find the ER of 
the reported keys for each benchmark using various attack 
algorithms. Then, the dataset process splits into two sepa-
rate paths as the ML models work with different types of 
data. To create a labeled dataset, we use combinational 
circuit benchmarks of ISCAS’85 [66] and MCNC’91 [67], 
and apply different locking methods on each benchmark. 
Table 1 shows all the benchmarks and locking techniques 
we use as our data, as well as the gate and key size of each 
one. While small benchmarks such as “apex4” are generally 

Fig. 6  CoLA structure
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unsafe regardless of the chosen logic locking method, the 
ML model can benefit from them by learning that no logic 
locking method is by default secure, and even if a secure 
locking is used on a small circuit, the circuit is still unsafe 
because its functionality can be revealed by brute-force 
analysis of the activated IC.

5.1  MADELINE Evaluation

MADELINE’s dataset is in the form of text (i.e., .BENCH 
files), so we create a dataset with the labels “safe,” “unsafe,” 
and “semi-safe,” each of which refers to its specific ERs. 
The term “safe” refers to an ER equal to 1, “unsafe” refers 
to an ER between 0 and 0.3, and “semi-safe” refers to values 
between the ranges “safe” and “unsafe.” We examined tradi-
tional pre-SAT locking methods such as xor-based locking 
[1], mux-based locking [2], and/or-based locking [3], and 
lut-based locking [4] as well as post-SAT point function 
methods such as SAR-Lock [16] and BLE [8], and cyclic 
methods such as RND-cycle [20], and R &D-cycle [21].

If SAT [5], Double DIP [7] and CycSAT [11] attacks take 
more than one day to find the key, then we consider it a time-
out, which means the key cannot be found, and thereby the 
locked benchmark is “safe” under these attacks. For AppSAT 
[6], BeSAT [12], and IcySAT [14], we used the NEOS suite 

[68] with the default setup. For Hill Climbing [9], the itera-
tion limit is being set to 1200.

To extract the ER of a reported key, we test random samples 
equal to the logarithm of the input size. At this stage, we use the 
ABC tool [63] to convert the .BENCH files into .V files to be 
able to simulate and examine the oracle and locked benchmarks  
using ModelSim. To keep the results fair, we impose the  
same test set on the reported key of a locked benchmark for 
different attacks. Inputs get chosen randomly, but when we 
select a random input set on one locked benchmark, we keep 
applying the same input to all other logic-locked versions of 
that benchmark. For a given benchmark, the locked version  
and oracle will represent the same output if the inputs are the 
same and the applied key is correct. During sampling and 
comparing the waveforms, we record the approximate error  
of the key. When the ER is found, the locked benchmark is 
ready to be labeled. Figure 7a shows the error rate distribution 
of the dataset. We want to emphasize that an imbalanced ER  
in the dataset helps MADELINE learn the security of a logic-
locked circuit better and extract distinctive features from the 
logic-locked circuits in which ensemble attacks can report an 
exact key (i.e., ER=0) or no key (i.e., ER=1). From a decision-
making perspective, there is no “semi-safe” logic-locked circuit.  
However, we consider “semi-safe” labeling to give the user 
insights on a given locked circuit that is currently not safe, but 
it may be improved to become safe.

Table 1  Logic locking benchmarks (#In, #K, and #G are the number of primary inputs, key inputs, and gates, respectively)

Bench #In XOR-based MUX-based AND/OR-
based

LUT-based SAR-lock Anti-SAT BLE RND-cycle R 
&D-cycle

[1] [2] [3] [4] [16] [17] [8] [20] [21]

#G #K #G #K #G #K #G #K #G #K #G #K #G #K #G #K #G #K

apex2 39 643 31 642 32 642 32 1780 292 644 31 687 38 713 40 630 20 670 40
apex4 10 5628 268 5628 269 5629 269 18,441 3356 5633 268 5381 10 5388 10 5380 20 5420 40
c432 36 170 8 170 10 140 10 1101 184 168 8 233 36 254 36 180 20 220 40
c499 41 212 10 214 12 214 12 1891 288 212 10 291 44 310 42 222 20 262 40
c880 60 404 19 385 22 405 22 1831 3112 403 19 504 60 536 60 403 20 443 40
c1908 33 925 44 734 46 926 46 1586 200 928 44 945 32 968 34 900 20 940 40
c2670 233 1253 60 1264 71 1264 71 3535 540 1257 60 1038 71 1781 234 1654 20 1253 40
c3540 50 1512 76 1502 76 1755 86 5026 836 1511 76 1634 83 1803 52 1689 20 1729 40
c5315 178 2427 115 2113 124 2431 124 7841 1176 2424 115 2307 134 1495 178 2327 20 2367 40
dalu 75 2418 115 2417 119 2417 119 4875 640 2436 115 2447 74 2491 76 2318 20 2358 40
des 256 6804 324 6809 336 6809 336 17,879 2856 6804 324 6550 38 7116 256 6493 20 6533 40
ex5 8 1109 53 1108 53 1108 53 4627 888 1109 53 1072 8 1078 8 1075 20 1115 40
i4 192 360 17 365 27 365 27 1538 272 355 17 527 94 821 192 358 20 398 40
i7 199 1384 66 1391 76 1391 76 4921 908 1389 66 1340 12 1818 200 1335 20 1375 40
i8 133 2589 123 2594 130 2594 130 8144 1348 2598 66 2533 34 2802 134 2484 20 2524 40
i9 88 1089 52 1091 56 1091 56 3477 608 1092 52 1088 26 1258 88 1055 20 1095 40
k2 46 1908 91 1907 93 1908 93 4482 620 1906 91 1908 46 1933 46 1835 20 1875 40
seq 41 3697 176 3697 178 3697 178 10,829 1848 3700 176 3600 40 3627 42 3539 20 3579 40
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Examples of the labeling are given in Tables  2 and 
3 which show the ER and final labeling decision of two 
benchmarks with different locking methods. As shown in the 
table, if one attack could find the exact key, the ER equals 
0, which means “unsafe” in our labeling technique. After 
the ER of all attacks is ready, we will define the final deci-
sion of the locking method on the benchmark based on the 
ER of the reported key by each attack. Based on the data 
in Tables 2 and 3, a benchmark could get different labels 
based on the locking technique and the attack method. For 
example, benchmark “c1908” under the lut-based locking 
with 1586 gates and a key size of 200 bits is being labeled 
as “unsafe,” whereas the same benchmark under the BLE 
benchmark with 968 gates and a key size of 34 bits is being 
labeled as “safe” because none of the attack methods could 
find the key. It is worth mentioning that some attacks could 
not find the key to a locked benchmark. For instance, SAT 
and Double DIP can not find the key of RND_C and R 
&D_C locking methods, hence their ERs are 1, known as 
“safe” for those attacks.

After creating the dataset, we build MADELINE in 
PYTHON and test it to find out the accuracy of the model. 

The accuracy of the training phase and testing phase can 
be affected by several hyperparameters. Figure 8 shows the 
accuracy results of MADELINE, based on various dataset 
proportions and different hyperparameters. Specifically, we 
investigate the accuracy of the model based on allocating 
60% to 90% of the data to the train set, depth sizes of 1 and 
2, and two different minimum sample split sizes. A general 
comparison of the accuracy gained with different minimum 
sample splits shows that a minimum sample split set to the 
size of the label works better than setting it equal to the size 
of the test set and it can help the model gain up to 13.54% 
total improvement in the training accuracy and 15.38% in 
the testing accuracy. A comparison between the results in 
Fig. 8 shows that the depth of the tree matters when the data 
allocated to the train set is less than 70%. That being said, 
if we allocate enough data to the train set, we do not have 
to worry about the complexity of the tree. Moreover, using 
appropriate hyperparameters, by allocating more data to the 
train set, we help the model learn features better, thereby 
achieving higher accuracy with the test dataset.

To evaluate the model and predict labels of the new, 
unseen data, we trained our model with 90% of the dataset, 

Fig. 7  Dataset distributions a error rate b area overhead

Table 2  MADELINE: Sample 
labeling for apex4

Bench SAT D-DIP CycSAT AppSAT Hill IcySAT BeSAT Label
[5] [7] [11] [6] [9] [14] [12]

SAR 0 0 0 0.002 0.002 0.054 0.002 Unsafe
AND/OR 0 0 0 0.033 0.421 0.42 0.38 Unsafe
LUT 0 0 0 0.31 0.531 0.35 0.36 Unsafe
XOR 0 0 0 0.1 0.289 0.36 0.273 Unsafe
MUX 0 0 0 0 0 0 0 Unsafe
BLE 0 0 0 0 0 0.044 0 Unsafe
RND_C 1 1 0 0 0 0.026 0 Unsafe
R &D_C 1 1 1 1 1 0.011 0 Unsafe



Journal of Hardware and Systems Security 

as it helps the model get the highest possible accuracy with-
out any overfitting. In Table 4, we provided some of the 
prediction results on unseen data. We used completely new 
data to make sure the model was unfamiliar with the struc-
ture of each benchmark. We also included combinational 
versions of two benchmarks from ITC’99 [69] to check the 
effectiveness of MALEDINE on a completely new dataset.

We performed attacks on these locked benchmarks and 
found the labels based on our labeling method. Then, we fed 
the unlabeled data to the model so that it could predict the label 
based on what it learned previously. The strong majority of the 
predicted labels are the same as actual labels, which means that 

the model learned most of the features of the training data and 
is working properly on unseen benchmarks. Overall, MADE-
LINE has 99.01% of prediction accuracy.

The model can benefit from the hyperparameter tuning 
in the prediction phase, too. Not only does hyperparameter 
tuning improve the model’s accuracy and prevent overfit-
ting, it also helps reduce the model execution time for the 
prediction. In Table 5, we can see the effect of the mentioned 
parameters on the prediction execution time. For instance, 
if we use a complex tree, with a depth of 2 and the sample 
split size equals to the size of the test set, it takes 141 mil-
liseconds for the model to predict the label, whereas for a 

Table 3  MADELINE: Sample 
labeling for c1908

Bench SAT D-DIP CycSAT AppSAT Hill IcySAT BeSAT Label
[5] [7] [11] [6] [9] [14] [12]

SAR 0 0 0 0 0.017 0 0.015 Unsafe
AND/OR 0 0 0 0 0.012 0 0.393 Unsafe
LUT 0 0 0 0.075 0.129 0.072 0.34 Unsafe
XOR 0 0 0 0 0 0 0 Unsafe
MUX 0 0 0 0 0.192 0 0.148 Unsafe
BLE 1 1 1 1 1 1 1 Safe
RND_C 1 1 0 0 0 1 0 Unsafe
R &D_C 1 1 1 1 1 0.41 1 Semi
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Fig. 8  MADELINE training & test set accuracy with different hyperparameters. D, depth; MSS, minimum sample split. a Train set = 60%, b 
train set = 70%, c train set = 80%, and d train set = 90%
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less complex tree, with a depth of one and a sample split 
size equals to the number of labels (i.e., 3), it takes 66 mil-
liseconds for the model to predict the label. In this case, the 
model has the same accuracy but is 53.2% more efficient in 
execution time.

5.2  CoLA Evaluation

As CoLA is a CNN model, it gets trained on data in the form 
of images, compared to GNN models, which get data in the 
shape of graphs. Contrary to GNN, the CNN data is independ-
ent of the circuit size. A CNN model uses the same sizes of 
images to get trained, which may sound tricky at first because 
a fixed-size image must provide enough information about 
circuits with different sizes. In this regard, we should find a 
proper image size that is computation-friendly so that we can 
squeeze a large circuit into it while making sure not to lose 
circuit information. However, on the other hand, this could be 
helpful to the training resource usage because no matter what 
the size of the circuit is, the CNN data size is fixed.

In addition, a GNN model works properly at predicting 
the key only if it receives the features of the benchmarks 
before training. This makes the model limited to the struc-
ture of the circuit, and the model will not be able to distin-
guish resynthesized versions of a circuit. However, by feed-
ing various structures of a benchmark to the CNN model, 
the model learns the features from scratch and categorizes 
resynthesized versions of a benchmark in the same group.

To extract data in the form of images, we used the web 
edition of Intel Quartus II. To create a labeled dataset, we 
examined different traditional pre-SAT locking methods 
such as xor-based locking [1], mux-based locking [2], and 
lut-based locking [4] as well as post-SAT methods such as 
SAR-Lock [16], Anti-SAT [17], BLE [8], RND-cycle [20], 
and R &D-cycle [21]. We recorded the LAOs by comparing 
the area of each locked benchmark with its original version. 
To gather the ERs, we ran different attacks [5–7, 11, 12, 14] 
on the locked benchmarks and chose the minimum ER among 
the reported keys for each benchmark. The setup for SAT [5], 
Double DIP [7], and CycSAT [11] attacks is the same as the 
default setup, and we consider it a timeout with an ER of 
1, if the key cannot be found in one day of running. For all 
the other attack methods (i.e., AppSAT [6], BeSAT [12], and 
IcySAT [14]), we used the NEOS suite [68] with the default 
setup. Then, we used Eq. 2 to assign “LSL” labels to each 
benchmark with � = 0.5 which means that both area overhead 
and security degree are considered to be equally important. 
The distribution of the area overhead in our dataset is shown 
in Fig. 7b. Finally, we converted the benchmarks to image 
netlists and augmented the gathered data to more than 10, 000 
samples using the approaches discussed in Section 4.

Table 4  MADELINE: Unseen 
samples for label prediction

Bench Lock #In #G #K Predict Actual

c1355 SAR 41 693 137 Unsafe Unsafe
c1355 SAR 41 837 273 Unsafe Unsafe
ex1010 AND/OR 10 6335 1269 Unsafe Unsafe
ex1010 AND/OR 10 7604 2538 Unsafe Unsafe
ex1010 LUT 10 17,918 3256 Unsafe Unsafe
c3540 LUT 50 5026 836 Unsafe Unsafe
c7552 XOR 207 3877 351 Unsafe Unsafe
c7552 XOR 207 5311 1756 Unsafe Unsafe
c2670 MUX 233 1716 713 Unsafe Unsafe
c7552 MUX 207 4880 1860 Unsafe Unsafe
b14_C MUX 227 9433 621 Unsafe Unsafe
ex1010 BLE 10 5094 10 Unsafe Unsafe
c6288 BLE 34 2504 34 Safe Safe
b19_C BLE 6666 213,520 6666 Safe Safe
c3450 RND_C 50 1689 20 Semi Semi
c7552 RND_C 207 3532 20 Semi Semi
c3540 R &D_C 50 1729 40 Safe Semi
c7552 R &D_C 207 3572 40 Safe Safe

Table 5  MADELINE: Prediction execution time for c6288 locked 
with BLE, based on the hyperparameter tuning

Min sample split Max depth Prediction 
time (ms)

Size of test set 2 141
Size of labels 2 88
Size of test set 1 91
Size of labels 1 66
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After creating the dataset, we built CoLA using Python 
and the Tensorflow package, trained it, and extracted the 
features of the image-shaped benchmarks. Then, a quantized 
version of CoLA is used to get validation computations done 
fast. The accuracy of the training phase and testing phase 
can be affected by several hyperparameters. Using Keras 
[64] hyperparameter tuning, we increased the accuracy of 
the training and validation phases with a loss value of below 
0.1% and without overfitting or underfitting. To avoid over-
training the model, we used an early stopping technique to 
stop training the model if, after five consecutive iterations, 
the model did not get higher accuracy than previous itera-
tions or if the loss value got higher than 1. At this stage, if 
the model accuracy was still not high enough, we restruc-
tured the model layers by changing the size of the sliding 
window, pooling window, and the number of layers.

Figure 9 shows the values of validation accuracy and 
loss of CoLA per epoch. We trained the model for 1500 
epochs with the primary dataset, which is 240 elements 
of data without augmentation, 4560 elements of data with 

Keras-only augmentation, and 10560 elements of data with 
all the augmentation techniques mentioned above. As illus-
trated, with a small amount of data, the accuracy cannot go 
higher than 69% , and the loss stays at a high rate of 4% which 
both are not ideal. On the other hand, if we feed enough 
data to the model, we can gain an accuracy of 97.3% for the 
validation phase with a loss value of around 0.05% , two of 
which show the model’s proper functionality. The validation 
accuracy ensures that, unlike GNN models, CoLA learns 
features beyond the structure and topology of the circuit.

As a neural network uses inputs, weights, and activa-
tions to predict the label, the values of each of the numbers 
affect the model’s accuracy. The distribution of the values 
of weights and activations is represented in Fig. 10. As the 
figure shows, over 99% of the numbers fall within the 8-bit 
representation range, and less than 1% of the numbers place 
in the 16-bit range. Consequently, using an 8-bit quantized 
model, we can still gain the same accuracy as the original 
model gives us. Table 6 shows a group of data to compare 
the execution time of the quantized model and the original 
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model. We used a validation set with some benchmark sizes 
larger than the training dataset to check the accuracy of the 
model for the larger, unseen data. Results show that the 
quantized CoLA assigns the logic locking faster than the 
original model with a negligible loss. The accuracy of the 
quantized model is 95.61% on 1056 items of validation data, 
whereas the original model is 97.3%.

5.3  MADELINE and CoLA Validation on Unseen 
Locking

MADELINE and CoLA work well on the datasets that are 
familiar to the model, with accuracy values of 99.01% and 
97.3% , respectively. However, to study the models’ effi-
ciency, we should test the models’ performance with cir-
cuits locked with a brand new method. We use UNSAIL 
[48] for this purpose. Feeding UNSAIL benchmarks to 
MADELINE does not require any additional steps since its 
primary goal is label prediction, but because CoLA assigns 
a locking method to unlocked benchmarks, it needs some 
modification to work with locked data properly. In this 
regard, we manipulated CoLA to assign a locking method 
only if the input benchmark needs it; otherwise, it returns 
nothing, which means the circuit is locked securely. In addi-
tion, to prepare an adequate amount of data for prediction, 

we utilized data augmentation and circuit resynthesis. A 
set of publicly available UNSAIL benchmarks is shown in 
table 7. The terms “v1” to “v4” refer to different versions of 
UNSAIL locking, which leads to various locked structures 
and a different number of gates.

Table 8 shows average accuracy for each of the UNSAIL  
benchmarks using MADELINE and CoLA. As we can see 
in the results of this table, MADELINE accuracy drops dra-
matically because circuit data in text format provides details  
about the number of each gate in the circuit but does not 
give enough information on the entire structure of the cir-
cuit as well as its functionality. On the other hand, CoLA’s 
accuracy ranges from 72.06% to 88.75% with an average of  
80.11% which is still pretty much acceptable given the fact 
that UNSAIL locking was completely new to the model. 
CoLA works better than MADELINE because it gets the data 
in the shape of images, so it has the chance to distinguish  
different resynthesized versions of the same benchmarks and  
learn benchmarks’ features beyond the structure of the 
circuit and finds information about its functionality. 
However, we cannot determinably tell if this is always 
the case for other unseen locking methods. One note 
to mention here is that training is a one-time offline 
phase, and the models can be re-trained at any time on  
new locking schemes.

Table 6  CoLA: Label prediction 
and execution time on a group 
of benchmarks on the validation 
dataset using the 8-bit quantized 
model. The augmentation type 
is resynthesis. Prediction LSL, 
prediction Label with quantized 
model; Q time, quantized model 
execution time; R time, regular 
model execution time

Benchmarks Overhead Q time (ms) R time (ms) Prediction LSL Same label?

ex1010 5% 360 1179 Anti-SAT Yes
ex1010 10% 173 612 Anti-SAT Yes
c3540 25% 271 843 Anti-SAT Yes
c7552 5% 149 577 Anti-SAT No
c7552 5% 159 593 Anti-SAT Yes
c1355 5% 124 541 SAR-Lock No
c1355 10% 169 627 SAR-Lock Yes
c3450 5% 173 663 R &D-C Yes
c3540 10% 233 760 R &D-C Yes
c7552 10% 207 827 R &D-C Yes
ex1010 25% 268 873 BLE Yes
c2670 5% 145 659 BLE Yes
c6288 5% 142 736 BLE Yes
c7552 25% 186 619 BLE Yes

Table 7  Number of gates 
in UNSAIL dataset with 
#Keysize=128

Benchmarks c880 c1908 c2670 c3540 c5315 c6288 c7552

v1 347 360 641 1063 1338 2438 1377
v2 509 - 636 1066 1352 2440 1337
v3 401 - 633 1071 1337 2511 1385
v4 398 - 638 1078 1329 - 1372
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5.4  MADELINE and CoLA Validation on New 
Benchmark and Unseen Locking

As another experiment, we study the models’ performance 
with new benchmarks locked with an unseen locking method. 
We use 5 different synthesized versions of b14_C [69] locked 
with CAC method [19] with a key size of 64. The benchmarks 
are available in the repository of Valkyrie [52]. We converted 
.V files to .BENCH in order to feed them to the models. 
Table 9 shows average accuracy using MADELINE and CoLA. 
The results are almost the same as in Section 5.3 where we had 
a new locking method but with the benchmark that has been 
used in the training phase. This may lead to the conclusion that 
our models can perform the same on new and unseen circuits, 
which is the ultimate goal of the paper.

6  Conclusion

Because of the rising threat of diverse attacks on logic lock-
ing, evaluating the security and overhead of logic-locked 
digital circuits is more critical than ever. In this paper, to 
evaluate the security of logic locking methods, we proposed 
MADELINE, a DT-based model that receives circuits in the 
form of text data and uses the error rate to report whether or 
not a locking method is “safe” for a specific circuit. Then, we 
proposed CoLA, a CNN-based model that receives circuits in 
the form of image data and employs key correctness values 
and area overhead to assign a low-overhead and secure lock-
ing method to a given circuit. Experimental results showed 
that although both models received high accuracy in the case 
of unseen benchmarks, in the case of unseen locking meth-
ods, MADELINE performs poorly while CoLA still keeps up 
a reasonable accuracy.

We do think that there is no foolproof approach to pre-
venting a zero-day attack, but there is immense value in 
having a reliable and proactive framework to assess the 
overhead and security of a newly proposed logic locking 
technique. For future works, the explainability of the deci-
sions made by the ML models can be pursued to identify 

secure yet low-overhead structures in digital circuits for a 
design-for-security approach.
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