
Reconfigurable Run-Time Hardware Trojan Mitigation for
Logic-Locked Circuits

Jordan Maynard
Computer Engineering & Computer Science Department

California State University Long Beach
Long Beach, CA, USA

jordan.maynard@student.csulb.edu

Amin Rezaei
Computer Engineering & Computer Science Department

California State University Long Beach
Long Beach, CA, USA
amin.rezaei@csulb.edu

Abstract—Globalized outsourcing of integrated circuit manu-
facturing has introduced potent security threats such as unau-
thorized overproduction and hardware Trojan insertion. An ap-
proach that is used to protect circuit designs from overproduction
is logic locking, which introduces key inputs to a digital circuit
such that only the correct key will allow the circuit to work
properly and all others will cause unintended functionality. On
the other hand, the majority of the existing methods to tackle
hardware Trojans are in the realm of proactive prevention or
static detection, but a more challenging problem, which is the
run-time mitigation of the Trojans inserted in a zero-trust design
flow, is yet to be solved. In this work, we look through the lens of
logic locking with the goal of introducing online reconfigurability
into a design and apply the fundamental principles of fault
tolerance and state traversal to create an effective mitigation
tactic against hardware Trojans. Redundancy is inserted at low-
controllable states to create trap states for the attackers, and
key inputs are added to select the active path. The strength of
our proposed approach lies in its ability to circumvent Trojan
payloads transparently at run-time with only a slight overhead,
as demonstrated by experiments run on over 40 benchmarks of
varying sizes. We also demonstrate viability when combined with
secure logic locking methods to provide multi-objective security.

Index Terms—Hardware Trojan; Reconfigurability; Logic
Locking; Fabless Manufacturing; Zero-Trust Environment

I. INTRODUCTION

Although the fabless model frees the semiconductor indus-
try from having to invest in pricey manufacturing facilities
and equipment, it poses additional security challenges, such as
unauthorized overproduction and malicious insertion of Hard-
ware Trojans (HTs). The situation worsens when integrating
third-party Intellectual Property (IP) cores and utilizing differ-
ent Electronic Design Automation (EDA) tools have become
the norm in different design stages. Given the current trend,
we have no choice but to consider a “zero-trust” environment
in the Integrated Circuit (IC) design cycle.

Logic Locking (a.k.a. logic encryption) techniques [1], [2],
which add extra key inputs to a given netlist, are well-
studied solutions [3]–[12] to preventing unauthorized ICs from
working. However, not much exploration has been done on
the additional key space that logic-locked circuits provide.
Considering a binary key size of n, only 1 out of 2n possible

keys is considered the correct key, and the others are left to
be wrong and thus not utilized.

HTs can be inserted at any stage of the design cycle and
are comprised of two parts: the trigger and the payload. The
trigger consists of a latch-like component that activates only
under rare conditions. This means that rare nets which are
usually inactive, are likely to be chosen as trigger signals
by the attackers to reduce the chance of static detection via
testing. The payload is dormant until the trigger is activated,
when it will carry out the intended malicious activity, such
as information leakage [13], incorrect operation, or inflicting
damage on the chip.

Existing approaches to securing ICs against HTs are either
proactive [14]–[16], which aim to prevent HT insertion, or
static [17]–[24], which attempt to detect inserted HTs by
additional testing after the manufactured ICs return from the
foundry. However, proactive methods are always imperfect
due to the introduction of new and unknown Trojan insertion
methods that could limit the capability of existing techniques.
In addition, static detection methods rendered the IC useless
after detecting possible HTs. A more effective yet challenging
direction is to find architectural approaches to mitigate the
effects of HTs during run-time. Key-controlled AND/OR gates
are proposed in [25] to reduce the number of rare nodes and
introduce false ones. However, the attacker can prune out
wrong keys and identify the false nodes via SAT-based attacks
[3]. Also, the way logic locking defends against HT insertion
has been quantified [26] and it is proven that traditional logic
locking methods [1], [2] have poor HT resilience.

After years of research, we believe the most promising
direction to achieve both secure logic locking and run-time HT
mitigation objectives is to define security in terms of reconfig-
urability. If the goal of logic locking is to have one correct key
while all other circuit configurations are meaningless, the goal
of HT mitigation can be defined as having multiple meaningful
configurations (i.e., multiple correct keys) that the IC can
switch to at run-time if a Trojan is triggered. Thus, if we
carefully design secure logic-locked circuits with multiple but
not exponential correct keys in which different correct keys do
not overlap on Trojan-susceptible states, these two hardware
security goals can converge. Figure 1 depicts the Trojan-aware
logic-locked IC design flow in a zero-trust environment.

979-8-3503-4953-5/24/$31.00 ©2024 IEEE

Third-party IP cores, EDA tools, IC testing entities, and foundries are considered

untrusted and hardware Trojans can be inserted at any design flow stage.

- 3-input majority circuit
- Use only NAND gates

1 | 0 | 0 | 1

Untrusted Trusted Run-Time

Hardware Trojans can be triggered at run-time. Our

goal is to mitigate the payload effect.

Fig. 1. Trojan-aware logic-locked IC design flow in a zero-trust environment

A. Problem Statement

Consider a sequential circuit f(X,S) : {0, 1}n×{0, 1}m →
{0, 1}t in which X is the set of input vectors and S is the
set of all states. Supposing the set of key vectors K, the
goal of traditional logic locking is to define a locked circuit
g(X,S,K) : {0, 1}n × {0, 1}m × {0, 1}r → {0, 1}t that
satisfies the following constraint with respect to some security
measurements:

∃k∗ ∈ K : g(X,S, k∗) ≡ f(X,S) (1)

Then, a Trojan-infected logic-locked sequential circuit
gHT (X,S,K) : {0, 1}n × {0, 1}m × {0, 1}r → {0, 1}t can
be modeled to satisfy the following constraint with respect to
some malicious goals:

∃xHT ∈ X,∃sHT ∈ S, ∃kHT ∈ K :

gHT (xHT , sHT , kHT) ̸≡ g(xHT , sHT , kHT)
(2)

Now, the combined goal of secure logic locking and HT
mitigation would be defined as follows:

∃K∗ ⊂ K :

∀k∗ ∈ K∗ : g(X,S, k∗) ≡ f(X,S)

∃k∗HT ∈ K∗ : gHT (X,S, k∗HT) ≡ f(X,S)

(3)

In other words, there must be a subset of correct keys (i.e.,
K∗) under which the logic-locked circuit is equivalent to the
original circuit, and there must be at least one correct key (i.e.,
k∗) within that subset under which the Trojan-infected logic-
locked circuit is still functionally equivalent to the original
circuit.

B. Contributions

The basis of our proposed method lies in using equivalent
logic in the circuit to prevent the effects of a hardware Trojan
from affecting circuit operation during runtime. Our unique
contributions are as follows:
• Defining and implementing algorithmic identification and

duplication of Trojan-likely states from behavioral circuit
specifications.

• Proposing a novel reconfigurability-based approach for
mitigating hardware Trojan infections in logic-locked
sequential circuits during run-time.

• Demonstrating the security gain and overhead of our
proposed approach through implementations on over 40
different FSM benchmark circuits with varying sizes.

C. Threat Model

We assume a zero-trust environment in which third-party
IP vendors, EDA tools, manufacturing foundries, and even IC
testing entities are all untrusted. The HT is inserted into the
design at some point before fabrication in the design flow and
can be skipped during the testing phase. We assume that one
or more nets are chosen as victims for triggers, as is customary
for any HT design. Furthermore, we suppose these triggers are
placed on nets that have rare activation conditions. We also
suppose that there is a malicious activity detection method
embedded into the circuit that is flagged once HT is triggered.
The design of such mechanisms can be done via run-time
reliability analysis [27] or online machine learning approaches
[28]. Once a HT is triggered in the design, we assume that the
payload is continuously delivered. The payload is considered
to have some malicious intent, but it should not be destructive
in any way that damages the chip and renders it unusable.

II. RUN-TIME TROJAN MITIGATION

In this section, we propose LIANA, a low-overhead recon-
figurabLe run-tIme hArdware TrojaN mitigAtion approach.
Stealth is advantageous to attackers inserting HTs, so in a
high-level design, we expect a Trojan to be inserted on the
least-likely areas of operation. These are referred to as low-
probability, low-controllable, or least-likely states. If we insert
redundancies in these portions of the circuit, we can gain
security benefits to circumvent the effects of possible inserted
HTs. Especially, we explore what occurs when one or sev-
eral least-likely states are cloned and a selective reachability
property is added to each clone. Multiple lower likelihood
states result from this design addition, and if any are chosen
as victim wires for HT triggers, the HT payload effect can
be mitigated through reconfigurable key inputs to the circuit.
Figure 2 shows an overview of LIANA.

We approach this problem from the Finite State Machine
(FSM) representation of sequential circuits. We can compute
transition probability based on the number of inputs that

Convert to

behavioral view

(FSM)

Original RTL

code of circuit

Extract Least-

Likely States

(LLSs)

Duplicate LLS

and add extra

key-bit for

reconfigurability

Convert back to

RTL code

Trojan-aware

gate level

netlist

ITC99 b02 RTL

'define S1 3'b000
'define S2 3'b001
'define S3 3'b010
'define S4 3'b011
'define S5 3'b100
'define S6 3'b101
'define S7 3'b110

ITC99 b02 RTL

'define S1 3'b000
'define S2 3'b001
'define S3 3'b010
'define S4 3'b011
'define S5 3'b100
'define S6 3'b101
'define S7 3'b110

b02 least likely state
probabilities

S1: 0.09375
S2: 0.25
S3: 0.125
S4: 0.0625
S5: 0.15625
S6: 0.125
S7: 0.1825

b02 least likely state
probabilities

S1: 0.09375
S2: 0.25
S3: 0.125
S4: 0.0625
S5: 0.15625
S6: 0.125
S7: 0.1825

b02 dupe RTL

'define S1 3'b000
'define S2 3'b001
'define S3 3'b010
'define S4 3'b011
'define S4' 3'b111
'define S5 3'b100
'define S6 3'b101
'define S7 3'b110

b02 dupe RTL

'define S1 3'b000
'define S2 3'b001
'define S3 3'b010
'define S4 3'b011
'define S4' 3'b111
'define S5 3'b100
'define S6 3'b101
'define S7 3'b110

S4 is the LLS

S4' is the

duplicate state

Fig. 2. LIANA overview

correlate to each next state transition. With this, it is possible
to find out which states are the least-likely using matrix
calculations. Then, we duplicate the least-likely states in order
to create clear trap states for attackers who want to insert
malicious Trojans. Transitions to and from the duplicate state
are added to the parents and children of the original state;
this allows for equivalent functionality with separate logic. A
key-bit can be introduced to choose between the original and
duplicate states. The low-controllable state clones serve to fool
attackers into inserting a HT trigger on these rare transitions
while retaining fully correct operation when an inserted HT is
activated during run-time. Additional key-bits must be added
into the cloning states such that in the case of wrong key
insertion, these states behave differently and thus cannot be
merged once a logic optimization is applied.

Finding the least-likely state is not possible from the deter-
ministic graph representation since it represents transitions as
a function of inputs decided by the user. We need to convert
the FSM into a probabilistic form that assigns each transition a
value representing the likelihood it will be chosen. Considering
F the original FSM, four steps are taken toward choosing

which states to duplicate. 1 We convert an original FSM into
a deterministic transition matrix. 2 We use this transition
matrix to create a probabilistic transition matrix to represent
the long-term FSM behavior. 3 We compute the steady-state
using Markov chains to determine the probability of being in
each state at any given time. 4 The least-likely states will
be cloned and may be traversed via new key inputs. Figure 3
and Tables I and II show the corresponding visual aids.

The Markov chain steady-state calculation takes two initial
inputs: a probability matrix P and a state vector S0. The
probability matrix denotes the transition probability between
every state. The state vector begins in the first state in the
machine and will reach a steady-state when continuously
multiplied by the probability matrix. The first iteration will
look like this: S1 = S0 × P . This is repeated n times until
we reach Sn × P = Sn−1 × P . Our final steady-state vector
is Sn, and it will contain the generalized probability of being

S1 S2

S3

(a) F

S1 S2

S3S3'

(b) 4

Fig. 3. (a) Example FSM with least-likely state S3 (b) Example FSM with
duplicated least-likely state

TABLE I
STEADY-STATE CALCULATION FOR FIGURE 3A

(a) Deterministic transition matrix 1
Deterministic S1 S2 S3
S1 1 1 0
S2 0 1 1
S3 1 0 0

(b) Probabilistic transition matrix 2
Probabilistic S1 S2 S3
S1 0.5 0.5 0
S2 0 0.5 0.5
S3 1 0 0

(c) Markov steady-state probabilities 3
Markov Steady-State S1 S2 S3
Probability 0.4 0.4 0.2

in each state at a given time.
There are cases in which a steady-state vector may not

be reached, but instead a set of repeating state vectors will
occur infinitely. Let us consider the case where there are
two alternating steady-states SA and SB . It follows that
SA = SB × P and SB = SA × P .To consolidate the steady-
state into a single vector, it is sufficient to combine the vectors
and take the mean of each state probability value. This will
return an estimated probabilistic likelihood for each state to

TABLE II
STEADY-STATE CALCULATION FOR FIGURE 3B

(a) Deterministic transition matrix
Deterministic S1 S2 S3 S3’
S1 1 1 0 0
S2 0 1 1 1
S3 1 0 0 0
S3’ 1 0 0 0

(b) Probabilistic transition matrix
Probabilistic S1 S2 S3 S3’
S1 0.5 0.5 0 0
S2 0 0.5 0.25 0.25
S3 1 0 0 0
S3’ 1 0 0 0

(c) Markov Steady-State Probabilities
Markov Steady-State S1 S2 S3 S3’
Probability 0.4 0.4 0.1 0.1

infer the lowest-controllable state.
The idea behind duplicating the least-likely state in the

FSM design relies on mitigating the effect of the payload of
an inserted HT. Transitions in and out of the new state are
identical to those in the old state, and the input and output
values are also identical. The only difference will be an added
key input that allows the user to choose between the original
path and the new path. Additional key-bits must be added
into the cloning states such that, in the case of the wrong
key insertion, the cloned states behave differently and thus
cannot be merged if a logic optimization is applied. Once HT
is detected in the design, the Trojan-free state should be chosen
over the Trojan-infected one. This will allow the IC to function
as if no Trojan was inserted, essentially bypassing the payload
effect.

The effect of a duplication on the steady-state probability
provides a crucial security advantage. The existence of a du-
plicate state halves the likelihood of both itself and the original
state and therefore increases their viability as an insertion point
for a Trojan trigger. This heightens the possibility that the
malicious modification will take place in either one of the
protected states, ensuring the success of our defense tactic.
This effect can be seen by comparing Tables I and II, referring
to the steady-state probabilities of the example FSMs in Figure
3.

Theorem 1. When a state in FSM is cloned with an extra
input, its steady-state likelihood is reduced by half compared
to the original FSM.

Proof. This is a constructional proof. In a sequential circuit,
f(X,S), the set of all states is denoted by S. We define
another set P , which contains a steady-state probability value
for each state in S: P ← steadyState(S). Using the smallest
value in P , we can map this to a state s in S: min(P) 7→
{s ∈ S}. We then duplicate this state copy ← s and add it to
the original state set S ← {S ∪ copy}. We also add a single
key-bit to the circuit so that the design can choose between
equivalent states: the circuit becomes g(X,S,K). The key
does not determine any change in functionality aside from

which path is chosen for operation. Since the functionality is
the same and there are now two states in place of the least-
likely one, the original and duplicate states combined will be
chosen as often as the original state. Thus, both will have half
of the original probability of the least-likely state.

State duplication must be done in a way that does not
add much overhead to the circuit. In any large design, there
are always some unreachable states that are not utilized in
the regular operation of the circuit. We can utilize these
unreachable states in the design by assigning them to our
new duplicate state(s), incurring no sequential logic overhead.
The level of protection provided by this defense is inherently
tunable as well. If we only duplicate the least-likely state,
it leaves open the possibility for the attacker to insert Trojans
both in the original and duplicated least-likely states. However,
it can be simply overcome by creating more copies of the
least-likely state with extra key inputs. This approach also
maximizes the state space by occupying every possible state of
every flip-flop in the design, leaving no room for a malicious
sequential functionality change using unreachable states. In
this case, an attacker would need to add extra FFs to the
design, which provides obvious footprints. Area, power, and
utilization overheads can also be considered tunable as an
effect of creating multiple state clones. Thus, our method can
be applied and modified to meet design constraints.

III. EXPERIMENTAL RESULTS

For the experiments, we used the custom example FSM
depicted in Figure 3, “b02” from the ITC’99 benchmark suite
[29], and a collection of 41 FSM designs from Synthezza
open source benchmarks [30]. The circuits were split into
three groups based on size. We applied LIANA to the Verilog
source of the benchmarks and then converted from Verilog
(.V) to .BENCH format using Yosys open synthesis suite [31].
Security results were gathered using Netlist Encryption and
Obfuscation Suite (NEOS) [32] in Ubuntu 64-bit 20.04.4 LTS.
Area and utilization overhead results were collected in Xilinx
Vivado 2016.4 webpack edition on Windows 10.

For each original benchmark, four versions were created
to demonstrate the capabilities of LIANA, as shown in Table
III. The small and medium benchmarks were given a 3-bit
reconfigurable key, while the large benchmarks were given
a 5-bit reconfigurable key. An additional 10-bit key is used
for locking each benchmark. It is worth mentioning that our
choice of SAT-secure locking [12] uses two different keys
that are applied to one set of key inputs at different times.
The key widths from the reconfigurable key and the locking
key are concatenated, leaving us with 13-bit and 15-bit key
sizes. LIANA’s script and the created benchmarks are hosted
on GitHub 1.

A. Security Analysis

Table IV depicts NEOS attack [32] results on different
versions of the benchmarks. As we anticipated, the correct

1https://github.com/cars-lab-repo/LIANA

TABLE III
BENCHMARKS

Benchmark Acronym Description
Original ORG Used as oracle for security metrics and baseline for power and utilization overhead metrics.
Duplicated DUPE Low-controllable states are duplicated with added key input to choose between states. Functionality

is equivalent to ORG under all the keys.
Duplicated Trojan-Inserted DUPE-TI Same as DUPE, but out of every two duplicated states, one has inverted outputs or wrong state

transitions. Functionality is equivalent to ORG only under one correct key.
Duplicated Trojan-Inserted XOR-
Locked

DUPE-TI-XOR Same as DUPE-TI, but an added XOR lock [1] showcases its ability to be used in compound
locking. Functionality is equivalent to ORG only under one correct key.

Duplicated Trojan-Inserted
Secure-Locked

DUPE-TI-SEC Same as DUPE-TI, but an added SAT-secure lock [12] showcases its ability to be used as multi-
objective security. Functionality is equivalent to ORG only under a pair of keys.

TABLE IV
NEOS ATTACK [32] RESULTS ON LIANA

Benchmark Key DUPE DUPE-TI DUPE-TI-XOR DUPE-TI-SEC

Small: ¡ 100 LUTs Key Size 3 bits 3 bits 13 bits I: 13 bits, F: 13 bits
custom, b02, girl10, robm, sortmax, e191, lightnew, ex6, knot2,
cat, e18, e17, lift2, e161, indep, and cpu

Reported Key Correct Correct Correct No Result

Medium: ¿= 100 LUTs & ¡ 250 LUTs Key Size 3 bits 3 bits 13 bits I: 13 bits, F: 13 bits
lift, checker9, as13, e10, robotben, bridge, bec, dmac, bcomp, pilot,
e7, lcu, e2, and e16

Reported Key Correct Correct Correct No Result

Large: ¿= 250 LUTs Key Size 5 bits 5 bits 15 bits I: 15 bits, F: 15 bits
e8, e15, pp, v16, e4, sara, proc81616, proc16816, proc1688, max,
and micks

Reported Key Correct Correct Correct No Result

keys were returned for each benchmark type except DUPE-
TI-SEC. For the DUPE benchmarks, each key value retains
its original functionality, so any key may be returned. The
NEOS attack framework checks the key at all 1’s first, so
the returned key was always comprised of 1’s. In the DUPE-
TI set, we inserted sequential Trojans in the benchmarks
such that only a single correct key would retain original
functionality. The results prove that the solver will choose
the correct key under the circumstance that a Trojan payload
is active in the design. Likewise, for the DUPE-TI-XOR set,
the solver returns the correct key under an active Trojan
payload. In this case, the solver is also able to report the
key values for the added XOR locks, which demonstrates
our ability to combine reconfigurability with other locking
methods and retain correct circuit functionality. The DUPE-
TI-SEC set yields no key when attacked. This verifies our
claim that reconfigurable state duplication can contribute to
high multi-objective security when combined with secure logic
locking methods. Multiple threat types can be mitigated using
our proposed approach in combination with another secure
method. The correct operation under secure locking is verified
by equivalence checking under the correct key.

B. Overhead Analysis

Figure 4 shows the overhead comparison for each bench-
mark between an XOR-locked version and a Trojan-aware
XOR-locked version implemented on the Nexys A7-100T
FPGA board. The active and static power dissipations are
reported for each benchmark version. The numbers of Look
Up Tables (LUTs) and Flip-Flops (FFs) utilized for each
design are also reported. In terms of power, the highest
power overhead came from “cat” with a 13.8% increase from
6.549 Watts to 7.451 Watts. The smallest power overhead was

demonstrated on “sara” with a 0.8% increase from 13.415
Watts to 13.524 Watts. The size of the benchmarks and
the number of states in the original FSM have a notable
influence on this outcome. Benchmarks with a FF increase
tended to have a slightly higher power consumption increase
in comparison with their peers. The ratio of added states and
key inputs to the original amount of states and allocated I/O
correlates closely to the power overhead. However, as can be
inferred from the results, our proposed method is scalable as
the circuit size increases.

LUTs, or combinational logic, displayed the highest in-
crease in “robm” with a 34.2% utilization increase from 34
LUTs to 41. The lowest increase was 0.5% from “bridge”,
which is likely because the content of the duplicated state
was very minimal. When only unspecified states are utilized
for reconfigurability, area overhead is only observable in
combinational logic, not in sequential logic. The correlation
between XOR-locked and Trojan-aware XOR-locked state space
increases is proportional to LUT utilization.

Sequential logic showed change only on the benchmarks
“robm”, “e18”, and “dmac”. In each of these cases, the number
of utilized FFs increased by one after adding reconfigurability.
The reason this happened in only this small sample is that the
state space increased from over the threshold limit set by the
original number of FFs in the design. For instance, if a circuit
has 3 FFs, it is possible to implement 23 or 8 states. If we
add a state, making the total 9, we will need an additional FF
to account for this extra functionality. This can be avoided by
adding states up to but not over the limit set by the original
design, in addition to utilizing unreachable states as discussed
in Section II.

(a) (b) (c)

Fig. 4. Overhead analysis (a) Power consumption (b) Number of LUTs (c) Number of FFs

IV. CONCLUSION

In this work, we developed a multi-objective security frame-
work called LIANA to not only protect circuit designs from
overproduction but also enable run-time mitigation of hard-
ware Trojans. We explored the opportunity that the additional
key space of logic locking can provide to develop algorithmic
identification and duplication of Trojan-likely states from
behavioral circuit specifications in order to provide clear
trap states for attackers to insert possible hardware Trojans.
Then, by changing different correct keys, we allowed the
run-time reconfigurability to switch to equivalent non-Trojan-
induced states that mitigate the effect of the Trojan payload.
Experiments on over 40 benchmarks with varying sizes con-
firmed that LIANA provides high security with low power and
resource utilization.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Award No. 2245247.

REFERENCES

[1] J. A. Roy, F. Koushanfar, and I. L. Markov, “Epic: Ending piracy of integrated
circuits,” In Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1069-1074, 2008.

[2] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of logic
obfuscation,” In Design Automation Conference (DAC), pp. 83–89, 2012.

[3] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic encryption
algorithms,” In International Symposium on Hardware Oriented Security and Trust
(HOST), pp. 137-143, 2015.

[4] K. Shamsi, M. Li, D. Z. Pan and Y. Jin, “KC2: Key-condition crunching for
fast sequential circuit deobfuscation” In Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 534-539, 2019.

[5] Y. Hu, Y. Zhang, K. Yang, D. Chen, P. A. Beerel, and P. Nuzzo, “Fun-SAT:
Functional corruptibility-guided SAT-based attack on sequential logic encryption,”
In IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), pp. 281-291, 2021.

[6] A. Saha, H. Banerjee, R. S. Chakraborty, and D. Mukhopadhyay, ”ORACALL:
An oracle-based attack on cellular automata guided logic locking,” In IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.
40, no. 12, pp. 2445-2454, 2021.

[7] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “Full-Lock: Hard
distributions of SAT instances for obfuscating circuits using fully configurable
logic and routing blocks,” In ACM/IEEE Design Automation Conference (DAC),
pp. 1-6, 2019.

[8] K. Nayak, D. Upadhyaya, F. Regazzoni, and I. Polian, “On the limitations of logic
locking the approximate circuits,” In Asian Hardware Oriented Security and Trust
Symposium (AsianHOST), pp. 1-6, 2022.

[9] R. Afsharmazayejani, H. Sayadi, and A. Rezaei, “Distributed logic encryption:
Essential security requirements and low-overhead implementation,” In Proceedings
of Great Lakes Symposium on VLSI (GLSVLSI), pp. 127-131, 2022.

[10] M. T. Rahman, M. S. Rahman, H. Wang, S. Tajik, W. Khalil, F. Farahmandi, D.
Forte, N. Asadizanjani, and M. Tehranipoor, “Defense-in-depth: A recipe for logic
locking to prevail,” In Integration, vol. 72, pp. 39-57, 2020.

[11] M. Zuzak, Y. Liu, and A. Srivastava,“Trace logic locking: Improving the parametric
space of logic locking,” In IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 40, no. 8, pp. 1531-1544, 2021.

[12] J. Maynard and A. Rezaei, “DK lock: Dual key logic locking against oracle-guided
attacks,” In International Symposium on Quality Electronic Design (ISQED), pp.
1-7, 2023.

[13] A. De, M. Nasim Imtiaz Khan, K. Nagarajan and S. Ghosh, “HarTBleed: Using
hardware Trojans for data leakage exploits,” In IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 28, no. 4, pp. 968-979, 2019.

[14] G. Guo, H. You, Z. Tang, B. Li, C. Li, and X. Zhang, “ASSURER: A PPA-friendly
security closure framework for physical design,” In Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 504-509, 2023.

[15] J. Knechtel, J. Gopinath, J. Bhandari, M. Ashraf, H. Amrouch, S. Borkar, S. -K.
Lim, and O. Sinanoglu, and R. Karri, “Security closure of physical layouts.” In
IEEE/ACM International Conference On Computer Aided Design (ICCAD), pp.
1-9, 2021.

[16] F. Wang, Q. Wang, B. Fu, S. Jiang, X. Zhang, L. Alrahis, O. Sinanoglu, J. Knechtel,
T. -Y. Ho, and E. F. Y. Young, “Security closure of IC layouts against hardware
Trojans,” In International Symposium on Physical Design (ISPD), pp. 229–237,
2023.

[17] Q. Yu, J. Dofe, and Z. Zhang, “Exploiting hardware obfuscation methods to
prevent and detect hardware Trojans,” In IEEE International Midwest Symposium
on Circuits and Systems (MWSCAS), pp. 819-822, 2017.

[18] S. Bhasin and F. Regazzoni, “A survey on hardware Trojan detection techniques,”
In IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2021-
2024, 2015.

[19] H. Salmani, “COTD: Reference-free hardware Trojan detection and recovery based
on controllability and observability in gate-level netlist,” In IEEE Transactions on
Information Forensics and Security, vol. 12, no. 2, pp. 338-350, 2017.

[20] A. Nahiyan, M. Sadi, R. Vittal, G. Contreras, D. Forte, and M. Tehranipoor,
“Hardware Trojan detection through information flow security verification,” In
IEEE International Test Conference (ITC), pp. 1-10, 2017.

[21] R. Vishwakarma and A. Rezaei, “Risk-aware and explainable framework for en-
suring guaranteed coverage in evolving hardware Trojan detection,” In IEEE/ACM
International Conference on Computer Aided Design (ICCAD), pp. 1-9, 2023.

[22] A. Jain, Z. Zhou, and U. Guin, “Survey of recent developments for hardware Trojan
detection,” In IEEE International Symposium on Circuits and Systems (ISCAS), pp.
1-5, 2021.

[23] K. I. Gubbi, B. S. Latibari, A. Srikanth, T. Sheaves, S. A. Beheshti-Shirazi, S.
Manoj Pd, S. Rafatirad, A. Sasan, H. Homayoun, and S. Salehi, “Hardware Trojan
detection using machine learning: A tutorial,” In ACM Transactions on Embedded
Computing Systems, vol. 22, no. 3, article 46, 2023.

[24] A. Vakil, A. Mirzaeian, H. Homayoun, N. Karimi, and A. Sasan, “AVATAR:
NN-Assisted variation aware timing analysis and reporting for hardware Trojan
detection’,’ In IEEE Access, vol. 9, pp. 92881-92900, 2021.

[25] Y. -L. Zhang, Y. -J. Yan, J. -W. Li, and M. Liu, “A novel hardware Trojan protection
technology based on logic encryption,” In IEEE International Conference on
Integrated Circuits and Microsystems (ICICM), pp. 396-400, 2018.

[26] J. Cruz, P. Gaikwad, and S. Bhunia, “Analysis of hardware Trojan resilience
enabled through logic locking,” In Asian Hardware Oriented Security and Trust
Symposium (AsianHOST), pp. 1-6, 2022.

[27] R. S. Chakraborty, S. Pagliarini, J. Mathew, S. R. Rajendran, and M. N. Devi, “A
flexible online checking technique to enhance hardware Trojan horse detectability
by reliability analysis,” In IEEE Transactions on Emerging Topics in Computing,
vol. 5, no. 2, pp. 260-270, 2017.

[28] A. Kulkarni, Y. Pino, and T. Mohsenin, “Adaptive real-time Trojan detection
framework through machine learning,” In IEEE International Symposium on
Hardware Oriented Security and Trust (HOST) pp. 120-123, 2016.

[29] S. Davidson, “ITC’99 Benchmark Circuits - Preliminary Results,” In International
Test Conference (ITC), pp. 1125-1125, 1999.

[30] S. Baranov, “Benchmarks of FSMs and Logic Circuits,”
https://www.synthezza.com/fsm-and-logic-circuit-benchmarks.

[31] C. Wolf, “Yosys open synthesis suite,” https://github.com/YosysHQ/yosys.
[32] K. Shamsi “NEOS: Netlist encryption and obfuscation suite,”

http://bitbucket.org/kavehshm/neos/.

	Introduction
	Problem Statement
	Contributions
	Threat Model

	Run-Time Trojan Mitigation
	Experimental Results
	Security Analysis
	Overhead Analysis

	Conclusion
	References

