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Abstract—The risk of hardware Trojans being inserted at
various stages of chip production has increased in a zero-trust
fabless era. To counter this, various machine learning solutions
have been developed for the detection of hardware Trojans. While
most of the focus has been on either a statistical or deep learning
approach, the limited number of Trojan-infected benchmarks
affects the detection accuracy and restricts the possibility of
detecting zero-day Trojans. To close the gap, we first employ gen-
erative adversarial networks to amplify our data in two alternative
representation modalities: a graph and a tabular, which ensure a
representative distribution of the dataset. Further, we propose a
multimodal deep learning approach to detect hardware Trojans
and evaluate the results from both early fusion and late fusion
strategies. We also estimate the uncertainty quantification metrics
of each prediction for risk-aware decision-making. The results
not only validate the effectiveness of our suggested hardware
Trojan detection technique but also pave the way for future studies
utilizing multimodality and uncertainty quantification to tackle
other hardware security problems.

Index Terms—Hardware Trojan; Multimodal Deep Learning;
Uncertainty Quantification

I. INTRODUCTION

Hardware Trojan (HT) insertion has become a major concern
in today’s fabless semiconductor manufacturing since attackers
can make malicious modifications for a variety of reasons,
such as information leakage, incorrect operation, or inflicting
damage on the chip [1]–[4]. While comprehensive approaches
are vital for countering HTs, they entail certain drawbacks.
Formal methods and simulation-based testing can be resource-
intensive and time-consuming. Intrusion detection systems may
yield false alarms, disrupting operations. Establishing a secure
supply chain can limit flexibility in supplier selection.

Recently, Machine Learning (ML) has emerged as a powerful
tool for detecting HTs [5]–[9]. It leverages algorithms to
identify intricate patterns indicative of Trojans, even in increas-
ingly sophisticated attacks. By training on diverse datasets,
ML models can classify circuits as Trojan-free or Trojan-
infected. Real-time processing enables continuous monitoring
and immediate threat response. However, challenges exist, for
example, acquiring large and diverse datasets, especially for
rare Trojans, which can be difficult. Moreover, models are
susceptible to adversarial attacks [10], potentially undermining
their decision-making. Interpretability [11] and explainability
[12] are crucial for trust but can be complex in this context.
Additionally, resource-intensive training and deployment may

limit accessibility for smaller manufacturers. Continuous re-
training is necessary to adapt to evolving Trojan techniques
[13], adding complexity to maintenance.

Our goal in this paper is to address the gaps in the current
ML-based approaches for identification of HTs by proposing
NOODLE, an uNcertainty-aware hardware TrOjan detectiOn
using multimoDal deep LEarning. The proposed method uses
graph representation and tabular data and performs binary
classification.

A. Related Works

The emphasis in traditional ML approaches for HT detec-
tion has primarily been on modeling techniques. This entails
the development and implementation of algorithms aimed at
enhancing the overall accuracy of HT detection. Many research
papers have concentrated on extracting features from Register
Transfer Level (RTL) or gate-level netlists and employing ML
models such as Support Vector Machine (SVM) [14], Neural
Network (NN) [15], eXtreme Gradient Boosting (XGB) [16],
and the Random Forest (RF) classifier [17]. In [18], image
classification techniques are also employed.

Multimodal Deep Learning (DL) has been a well-explored
topic in the Artificial Intelligence (AI) community. Early
research, exemplified by Deep Boltzmann Machines (DBM)
focused on the model’s capacity to understand probability
distributions across inputs with multiple modes [19]. Addi-
tionally, applications of uncertainty-aware multimodal learning
[20] have been successfully demonstrated in healthcare [21]
and in scenarios involving multimodal task distributions [22],
particularly in safety-critical environments. In our work, we
target the fusion of graph [23], [24] and Euclidean data as the
modalities of interest along with uncertainty estimation.

Moreover, when working in the hardware security domain,
it is expected to have fewer data points that are malicious or
Trojan-infected. In this context, it is necessary to work with
small data [25] and this has been achieved in various domains
such as material science [26] and anomaly detection [27].

B. Contributions

In this paper, we investigate the feasibility of applying a
multimodal ML approach for HT identification by deriving
two data representations of circuits. The first is graphical
representation [28] of circuits, and the second is euclidean data



[29] derived by processing the Abstract Syntax Tree (AST)
of the RTL files (Verilog). Although the use of multimodal
approaches for improved model accuracy has been used in other
domains, we do not see any application in Trojan identification.
For uncertainty-aware multimodal learning, we believe the logic
should be implemented at the information fusion level of the
modalities, and thus, we leverage the p-values aggregation with
conformal prediction. Our main contributions are as follows:

• Proposing a multimodal learning approach using graph and
euclidean data of the hardware circuits. To the best of
our knowledge, this study is the first to investigate and
implement a multimodal approach for HT detection.

• Suggesting a model fusion approach using p-values with
an uncertainty quantifier. By employing p-values as statis-
tical measures, we can systematically assess each modal-
ity’s contribution to the overall prediction. This not only
enhances the interpretability of the fusion process but also
enables more robust decision-making.

• Addressing the challenges of missing modalities and solv-
ing the issue of handling an imbalanced and small dataset
by leveraging generative adversarial networks.

II. PRELIMINARIES

A. Multimodal Learning

Multimodal learning [30] addresses complex problems by
integrating information from multiple modalities, such as text,
images, and audio, to obtain a comprehensive understanding of
a given phenomenon. In our case, we use graphical data and
tabular representations of the source circuits. This approach
enables models to capture nuanced relationships that may be
overlooked when considering each modality in isolation, and
thus empowers the model to make more robust predictions.

From a mathematical perspective, multimodal learning in-
volves the integration of data representations into a uni-
fied framework. Let X1, X2, ..., XM represent M different
modalities of data, each with their respective feature spaces
F1,F2, ...,FM . The task is to learn a mapping f that captures
the relationships between these modalities. Mathematically, this
can be formulated as:

f : F1 ×F2 × ...×FM → Y (1)

where Y is the target space, representing the desired prediction.
The challenge lies in effectively combining information from

diverse modalities, which can be approached through various
techniques such as late fusion or early fusion.

In late fusion [31], features are extracted independently from
each modality and then combined at a later stage. This approach
treats modalities as separate entities until a decision needs to
be made and can be represented as:

f(x1, x2, ..., xM ) = g(h1(x1), h2(x2), ..., hM (xM )) (2)

where hi represents feature extraction for modality i, and g
combines the extracted features.

In early fusion [32], information from different modalities
is combined at the input level, resulting in a joint feature
representation which can be expressed as:

f(x1, x2, ..., xM ) = h(x1, x2, ..., xM ) (3)

where h combines the raw input data from all modalities.

B. Calibrated Prediction

Calibration involves ensuring that a model’s confidence
score accurately reflects the true probability of the pre-
diction’s correctness [33]. Let X be the input data, and
Y be the output label. Given a training dataset D =
(x1, y1), (x2, y2), ..., (xn, yn), the goal is to learn a function
f that can predict the correct output label y for a given input
x. The output of the model for an input x can be denoted as
f(x), and the true probability of the prediction’s correctness
can be denoted as P (y = 1|x). A calibrated model produces
a confidence score g(x) that reflects the true probability of
correctness of the prediction. The goal of calibration is to
ensure that the confidence score g(x) is well-calibrated, i.e.,
P (y = 1|g(x) = p) = p for all p in the range [0, 1].

Calibration is a crucial aspect in HT detection since it aids
in determining the likelihood of the existence of a Trojan in
a circuit, which can have a significant impact on decision-
making. In situations where a model’s confidence score is high,
but the likelihood of a Trojan’s presence is low, it is reasonable
to assume that the circuit does not contain a Trojan. Conversely,
if the confidence score is low but the likelihood of a Trojan’s
presence is high, further investigation of the circuit is necessary.

C. Conformal Prediction

Conformal Prediction (CP) is a ML framework that assesses
prediction uncertainty by generating sets of possible predictions
[34]. This approach strengthens the inference of conventional

Algorithm 1: Uncertainty-aware information fusion
Input : Number of data sources N ;

Training sets for each data source
T1 = {(x(1)

1 , y1), . . . , (x
(1)
n , yn)}, . . . , TN =

{(x(N)
1 , y1), . . . , (x

(N)
n , yn)}, where x

(j)
i is the ith

data point belonging to the jth data source and yi is
the class label of the ith data point;
Number of classes M ;
Class labels y(i) ∈ Y = {y(1), y(2), . . . , y(M)};
Classifiers S1, . . . , SN for each data source;
Confidence level E.

Output: Conformal prediction regions
rE = {y(j) : p̂j > 1− E, y(j) ∈ Y }.

1 Get the new unlabeled example w.r.t each data source
x
(1)
n+1, . . . , x

(N)
n+1.

2 Evaluate conformal predictors and classifiers S1, . . . , SN

corresponding to each data source, compute p-values p
(i)
j ,

where i = 1, . . . , N corresponds to the ith data source and
j = 1, . . . ,M corresponds to the jth class label.

3 for each class label y(j), j = 1, . . . ,M do
4 Compute p-value, p̂j , of combined hypothesis from N

modalities
5 return rE .



Fig. 1: NOODLE framework: The input consists of an RTL file (Verilog), which undergoes conversion into both graph and
Euclidean representations, and then input into a multimodal deep learning classifier. This classifier yields a decision indicating
whether the circuit is Trojan-infected or Trojan-free.

models, ensuring their reliability and enabling confidence es-
timation for individual predictions. It is worth noting that
minority classes often bear a disproportionate burden of errors
when label-conditional validity is lacking [35]. Nevertheless,
this challenge can be mitigated by ensuring label-conditional
validity, which guarantees that the error rate, even for the
minority class, will eventually converge to the selected sig-
nificance level in the long run.

In certain instances, CP may yield uncertain predictions,
signifying that prediction sets contain more than one possible
value. This happens when none of the labels can be rejected
at the specified significance level. Moreover, when employing
CP, the confusion matrix differs from the conventional one due
to the distinctive nature of prediction sets, which encompass
multiple values rather than a single one. In cases where
providing a single-point prediction may be more appropriate
than a prediction set or interval in a hedged forecast, opting
for the label with the highest p-value is a straightforward and
reasonable choice.

There has been limited exploration of the application of CP in
modal fusion [36]. This method entails treating individual data
sources as separate hypothesis tests within the CP framework.
Subsequently, it utilizes p-value combination techniques as a
test statistic for the combined hypothesis after the fusion pro-
cess. Our approach relies on the Mondrian Inductive Conformal
Prediction (ICP) methodology [37] outlined in Algorithm 1
for the uncertainty-aware fusion of various modalities during
classification. This algorithm can be effectively extended for
both early and late fusion of the modalities.

III. MULTIMODAL HARDWARE TROJAN DETECTION

While state-of-the-art works on HT detection have focused
mainly on choosing the right algorithm and choosing different
representations of the dataset for improved accuracy, incor-
porating different modalities of the same data and feeding it
to the ML system has not been investigated. By performing
information fusion derived from different modalities, a more
refined data representation can be achieved. Furthermore, in a
practical scenario, we encounter missing values while collecting

data, and this may lead to missing modalities when dealing with
a multimodal ML approach. So, we also need a method that
handles missing modalities for any given dataset. Lastly, in the
domain of hardware security, it is difficult to get enough data
for training, especially the labels marked as Trojan-infected
because of the rarity of the event. In such a situation, we need
to work with limited data.

Our proposed NOODLE framework is shown in Fig. 1
emphasizing the design and implementation, and a pseudocode
is also provided in Algorithm 2. We choose to use two
modalities, i.e., graph and tabular data representations. Methods
like multimodal autoencoder [38] have been used for handing
missing modalities; however, we use Generative Adversarial
Networks (GANs) [39] to increase the dataset size to 500 data
points as it aims to generate samples that are consistent with
the joint distribution of the observed modalities and facilitate
more effective multimodal fusion. The data points labeled as
Trojan-Free (TF) will be segregated, and only these will be used
to generate more data points using GAN so that they represent
the same label, and we will do the same for data labeled as
Trojan-Infected (TI). Before performing multimodal learning,
we first explain the working of uncertainty-aware model fusion.

To perform an uncertainty-aware multimodal fusion, we
leverage conformal prediction p-values for the model fusion as

Algorithm 2: Multimodal deep learning
Input : RTL-level files (Verliog) of circuits
Output: Decision (D) = Trojan-free or Trojan-infected

1 for each circuit C do
2 Convert C to Graph data G and Euclidean data T.

if ∃ missing modalities then
3 perform GAN to impute the missing modality.

4 Feed the modalities to CNN-based classifier.
for each modalities M do

5 Use Algorithm 1 for uncertainty-aware information fusion.
6 Perform early fusion.
7 Perform late fusion.

8 Choosing the winning fusion method.
9 return D.



described in Algorithm 1. First, we use a Convolutional Neural
Network (CNN)-based classifier for graph and tabular data
sources with a designed non-conformity score that provides
p-values for each label and for each data modal. The below
non-conformity score can be used in the CP framework to get
calibrated conformal predictions:

NS =

T∑
t=1

Bt(x, y) (4)

where Bt(x, y) is the non-conformity score of (x, y) com-
puted from a classifier, ht. Thus, for every class label y(j),
j ∈ {1, ...,M}, we have an individual null hypothesis for each
data source, H01, H02, ...,H0N , where M is the number of
class labels, which in our case is either TF or TI, and N is the
number of data sources. Thus, for every class label y(j), we
obtain N p-values, p(i), i = 1, ..., N (one for each modality).
These p-values are then combined into a new test statistic
C(p(1), ..., p(N)), which is used to test the combined null
hypothesis H0 for class label y(j). The conformal prediction
region at a specified confidence level, rE , is then presented as
a set containing all the class labels with a p-value greater than
1−E. The mentioned steps helps in realization of uncertainty-
aware multimodal fusion.

After obtaining a sufficient number of data points for the
experiment, we implement multimodal ML using the graph
and tabular data. Specifically, we have employed a CNN for
binary classification. It is worth mentioning that any ML model
can be optimized through hyperparameter tuning to enhance
accuracy. However, our primary emphasis is on assessing the
effectiveness of uncertainty-aware multimodality by accessing
early and late fusions. Finally, the model will be used to make
further informed decisions for the detection of HTs.

IV. EXPERIMENTAL RESULTS

We used Python (3.9) and implemented NOODLE on macOS
(13.3.1) with 8GB RAM. The experimental results with source
code and the dataset are hosted on GitHub1.

A. Dataset

For our experiment, we have used the features extracted from
the TrustHub RTL-level (Verilog) Trojan dataset based on code
branching features [29] and the graph dataset in [28] which
includes RTL source code files (Verilog) for each IP core design
containing both malicious and non-malicious functions.

TABLE I: Brier score comparison for different modalities

Dataset Brier Score

Graph-based Data 0.1798
Tabular-based Data 0.1913
NOODLE - Early Fusion (Graph + Tabular) 0.1685
NOODLE - Late Fusion (Graph + Tabular) 0.1589

1https://github.com/cars-lab-repo/NOODLE

(a) (b)

Fig. 2: NOODLE’s Brier score (a) Early fusion (b) Late fusion

B. Brier Score

For any of the classification problem statements, the most
common performance metric is model accuracy, followed by
various other complementing metrics such as precision recall
and F1-score. However, these metrics can be misleading in
situations where the class distribution is imbalanced, as in
our case. For this reason, we have used the Brier score as
an evaluation metric for assessing the quality of probabilistic
predictions in the classification of HTs. The Brier score, which
offers insights into accuracy and calibration, is defined as
follows:

BS =
1

N

N∑
i=1

(pi − oi)
2 (5)

where N is the number of instances, pi is predicted probability
for instance i, and oi is the observed outcome for instance i.
The Brier score ranges from 0 to 1. A score of 0 indicates
perfect accuracy, meaning the predicted probabilities perfectly
match the actual outcomes. A score of 1 signifies complete in-
accuracy, where the predicted probabilities are entirely different
from the actual outcomes.

We begin the evaluation process by independently assessing
each modality. This involves conducting binary classification on
both the graph dataset and the tabular data. The resulting com-
parative Brier scores for these classification tasks are presented
in Table I. The experimental outcome demonstrates that, when
employing the same CNN-based deep learning model with
identical hyperparameters, the graph dataset yields a superior
Brier score (0.1798) compared to the tabular data (0.1913). It is
worth noting that while we established a baseline model using
CNN, any other alternative classification algorithms can also
be employed in this context.

Then, we tested NOODLE with two different information
fusion approaches, i.e., early fusion (feature) and late fusion
(decision). As shown in Table I, the early fusion approach,
which combines the graph and tabular data before processing,
yields a Brier score of 0.1685. On the other hand, the late
fusion strategy, which integrates the graph and table data after
individual processing, demonstrated the best performance with
a Brier score of 0.1589.

It is worth noting that neither of these data fusion methods
can be deterministically labeled as superior [40] as each one
of them will demonstrate their potential to produce favorable



Fig. 3: NOODLE’s confidence calibra-
tion curve

Fig. 4: NOODLE’s ROC-AUC curve
under late fusion

Fig. 5: NOODLE’s radar plot for consoli-
dated metrics

outcomes when the data distribution changes. For this reason,
we implemented both of the fusion approaches and chose the
approach that provides a better Brier score (i.e., closer to 0),
as mentioned in Step 8 of Algorithm 2. The corresponding
Brier score distribution with mean interval is also shown in
Fig. 2a and Fig. 2b for early and late fusion, respectively. This
provides a comprehensive view of predictive accuracy across
multiple scenarios and is also useful for comparing models and
understanding the variability in performance.

C. Confidence Calibration Curve

The confidence calibration curve plots observed probabilities
of occurrence as a function of the predicted probabilities for
the classification model, as shown in Fig. 3. For the model
to be perfectly calibrated, it will have all data points along the
diagonal; however, in our case, the model is not well calibrated
because of the highly imbalanced dataset. These are the cases
on which any decision-maker should focus while making a risk-
aware decision and not completely relying on accuracy alone.
It helps evaluate the alignment between a model’s predicted
probabilities and the actual likelihood of events.

A histogram at the bottom of Fig. 3 shows the predicted
chance for 109 test data. It describes the distribution of the
forecasts and helps with visualization of the sharpness, i.e.,
tendency of the predictions to lie at the extremes of the 0-1
distribution, and is equal to the variance of the predictions.

D. ROC-AUC Curve

The Receiver Operating Characteristic (ROC) curve illus-
trates the balance between sensitivity and specificity in a model.
It provides a visual representation of how these two metrics
change as the threshold for classifying a condition varies. The
Area Under the Curve (AUC), on the other hand, quantifies
the likelihood that a randomly chosen pair of circuits, one with
the Trojan and one without, will be accurately classified by the
model. The NOODLE’s ROC-AUC curve is given in Fig. 4.

The white area represents the optimal zone for model per-
formance, and the lightly shaded red areas represent the zones
of acceptable efficacy. The values for ROC-AUC range from

0 to 1, where values near ‘1’ suggest that it can effectively
discriminate between TF and TI cases with a high degree of
confidence, and if the value is near ‘0’, the model’s performance
is worse than random guessing. In our case, the value is 0.928,
which suggests that the model is performing well.

E. Radar Plot

The radar plot provides a visual means of presenting com-
plex, multi-dimensional data, as shown in Fig. 5. When ap-
praising the effectiveness of a predictor, there is a tendency
to focus narrowly on a limited set of metrics. However, the
radar plot provides a method for gaining a comprehensive
understanding of performance across diverse dimensions. In a
radar chart, each variable is represented along its corresponding
axes (some variables have been normalized to conform to the
0-1 range of the radial axis). It is also important to organize the
variables in a way that clusters connected ideas or principles.
This aids in conducting a thorough evaluation of various facets
of performance.

In the given radar plot, we have metrics related to dis-
crimination, which include AUC, resolution, and refinement
loss. Following these are combined metrics assessing both
calibration and discrimination, namely the Brier score and Brier
skill score. As shown in the figure, the model is less sensitive
and has high accuracy. This implies that while the model is
generally accurate in its predictions, it may not be as effective
in identifying all the actual TI cases. This could be due to a
higher number of false negatives, which means the model is
missing some of the positive cases.

V. CONCLUSION

In this paper, we have addressed the growing concern of
maliciously inserted hardware Trojans into chips at various
stages of production in an era where fabless manufacturing is
hard to trust. Specifically, we adopted an innovative approach
by utilizing generative adversarial networks to expand our
dataset with two distinct representation modalities: graph and
tabular. Additionally, we introduced an uncertainty-aware mul-
timodal deep learning framework called NOODLE for detecting



hardware Trojans. We assessed our findings using both early
and late fusion strategies, offering a comprehensive evaluation
of our approach’s efficacy. Moreover, we integrated metrics
for uncertainty quantification for each prediction, enabling
us to make decisions that are mindful of potential risks.
The utilization of multimodality and uncertainty quantification
shows great potential for addressing other critical challenges
in hardware security such as logic locking [41]–[44]. These
contributions collectively represent a significant step forward
in enhancing the security and reliability of hardware systems
in the face of emerging threats.
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