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Abstract—The outsourcing of semiconductor manufacturing
raises security risks, such as piracy and overproduction of
hardware intellectual property. To overcome this challenge, logic
locking has emerged to lock a given circuit using additional
key bits. While single-key logic locking approaches have demon-
strated serious vulnerability to a wide range of attacks, multi-
key solutions, if carefully designed, can provide a reliable defense
against not only oracle-guided logic attacks, but also removal and
dataflow attacks. In this paper, using time base keys, we propose,
implement and evaluate a family of secure multi-key logic locking
algorithms called Cute-Lock that can be applied both in RTL-
level behavioral and netlist-level structural representations of
sequential circuits. Our extensive experimental results under a
diverse range of attacks confirm that, compared to vulnerable
state-of-the-art methods, employing the Cute-Lock family drives
attacking attempts to a dead end without additional overhead.

Index Terms—Logic Locking; SAT Attack; Removal Attack;
Multi-Key Locking; Dynamic Locking

I. INTRODUCTION

As chip manufacturing becomes increasingly outsourced,
the need for robust protection mechanisms is constantly in-
creasing. In this split of design and manufacturing, one com-
pany designs the digital Integrated Circuit (IC), while another
handles the physical fabrication phase. Logic locking [1]–[3]
has emerged as a promising solution to prevent piracy and
overproduction of ICs. Combinational locking is the process
of adding additional inputs, called key bits, to an IC to corrupt
the output when the incorrect key is inserted. On the other
hand, sequential locking is the procedure of adding additional
obfuscation states where the user needs to traverse through
those states to utilize the circuit.

Traditional logic locking solutions are susceptible to the
oracle-guided SAT attack [4] that extracts the key using an
oracle (i.e., a working chip bought off the market) and a locked
netlist, potentially leaked from an untrustworthy foundry.
Although different logic locking solutions have been proposed
to protect against the original SAT attack [5], [6], they are
still susceptible to approximate versions of oracle-guided SAT
attacks [7], [8] as well as dataflow and removal attacks [9],
[10] that try to remove or reverse engineer the added lock and
extract the original circuit.

While the majority of the logic locking solutions have
been focused on single-key methods, we believe that their

vulnerabilities against powerful attacks can be effectively
mitigated through time-based multi-key logic locking. Thus,
in this paper, we introduce the idea of advanced multi-key
logic locking for sequential circuits in which the states are
locked using a counter and multiple keys that are applied at
different times. For the circuit to operate correctly, these key
values must be provided in a specific order determined by
the corresponding clock cycle. The motivation is to improve
security by complicating the decoding process, ensuring that
the circuit only operates as intended when the correct key
sequence is applied at the correct time. Our proposed approach
uses the current hardware to manipulate the state transition and
provides a low-overhead solution for sequential logic locking.
With the addition of multiple keys, it maintains resilience
against oracle-guided attacks with [4], [7], [8] or without [11]–
[13] scan chain access assumption. Additionally, it improves
structural integrity against dataflow [9] and removal [10]
attacks. In this paper, we present the following contributions:
• Proposing Cute-Lock-Beh, a counter-based multi-key

logic locking behavioral solution to secure circuits
against logic attacks in RTL-level representation;

• Proposing Cute-Lock-Str, a counter-based multi-key
logic locking structural solution to secure circuits against
both logic and structural attacks in the gate-level netlist;

• Generating more than 60 benchmarks based on the pro-
posed methods, evaluating their overhead, and testing
their security against state-of-the-art oracle-guided as
well as removal and dataflow attacks.

II. BACKGROUND AND RELATED WORK

In this section, we begin by examining the development of
logic locking methods alongside oracle-guided and removal
attacks, followed by an overview of current approaches in
multi-key logic locking.

A. Logic Locking Techniques

Logic locking techniques can be categorized into com-
binational locking and sequential locking. Initial combina-
tional logic locking solutions were XOR-based and MUX-based
mechanisms [1], [2]. However, the oracle-guided SAT attack
[4] has exposed vulnerabilities in these methods, leading to



the development of more robust techniques such as Anti-
SAT [5], SAR-Lock [6], TT-Lock [14], SFLL [15], BLE
[16], DLE [17], and others [18]–[21] that increase the time
complexity of SAT attacks. Furthermore, HARPOON [3] is
a sequential logic locking solution that adds additional states
to provide an obfuscation mode; in order to utilize the cir-
cuit, one must navigate through the obfuscation mode first.
Boosted Finite-State Machine (BFSM) [22] uses a Physical
Unclonable Function (PUF) to determine the starting state,
which is typically an obfuscated state; to unlock and use the
circuit, a specific input sequence must be provided to traverse
from the obfuscated state to the functional state. In addition,
Dynamic State Reflection (DSR) [23] adds black holes to
hide the boundary between obfuscation and functional modes.
While all these logic locking methods have been challenged
by different attacks such as SAT attack [4], Key-Condition
Crunching (KC2) [12], Bounded Model Checking (BMC) [11],
and Reverse Assessment of Netlist Encryption (RANE) [13],
researchers have explored other combinational and sequential
methods [24]–[28] as well.

Adding extra states would incur additional overhead when
using the circuit since one would need to transition between
the obfuscated states. In addition, single-key solutions remain
susceptible once the key is compromised, potentially exposing
the entire security of the IC. In our proposed solutions,
different keys need to be provided to the circuit at different
times, and they re-route users to the wrong states whenever
a wrong key is applied. In this case, the circuit starts at the
initial state and will maintain the same state transition as the
original circuit as long as the correct keys are applied.

B. Logic Locking Attacks

Logic locking attacks are categorized into oracle-guided
logic attacks as well as removal attacks. The oracle-guided
SAT attack [4] is one of the most powerful attacks against
combinational locking and sequential locking with scan ac-
cess; it uses a SAT solver to iteratively find Discriminating
Input Patterns (DIPs) that eliminate incorrect keys, eventually
converging on the correct key. This attack has been shown to
break almost all of the early logic locking schemes efficiently
[1]–[3]. An extension of the SAT attack, AppSAT [7] aims
to find approximate keys that work for most input patterns.
This attack is particularly effective against schemes such as
Anti-SAT [5] with low output corruptibility. The Double DIP
attack [8] improves upon the SAT attack by finding two DIPs
in each iteration, allowing it to break certain SAT-resistant
locking schemes such as SAR-Lock [6].

On the sequential side, the BMC attack [11] targets sequen-
tial logic locking by unrolling the circuit for a fixed number
of time steps and using a SAT solver to find the key. The
KC2 attack [12] improves upon the BMC attack by using
incremental SAT solving and dynamic simplification of key
conditions. The RANE attack [13] uses API-based invocation
of formal verification tools to model the initial state as a secret
key variable and find the unlocking sequence.

In addition, the Functional Analysis Attack on Logic Lock-
ing (FALL) [10] is primarily a removal attack, with some
structural components designed to extract the logic locking
key. FALL has shown to be successful against logic locking
techniques such as TTLock [14] and SFLL [15]. In addition,
the Dataflow-based Netlist Analysis (DANA) attack [9] is
designed to assist reverse engineering circuits by structuring
an unstructured sea of gates. The key operation is to group
registers into distinct clusters, which can then be analyzed
to derive the high-level architecture and functionality of the
circuit. By focusing on the flow of data between Flip-Flops
(FFs), DANA helps to recover meaningful high-level structures
from a flatten netlist, making it a crucial first step in the reverse
engineering process. Other attacks have also been proposed
[29]–[32] targeting a subset of existing logic locking solutions.

C. Multi-Key Approaches

Recently, the idea of using multi-key solutions to mitigate
oracle-guided SAT attacks is proposed [33]–[37]. DK-lock
[33] is a two-key logic locking solution that uses an activation
key and then a functional key. The control logics of both the
activation phase and the functional phase then unified into an
FSM [34]. DK-Lock is susceptible to attacks like [31] that can
expand the key size to reverse the method back to a single-key
solution. SLED [35] is another multi-key sequential solution
that works by dynamically changing the keys during circuit
operation generated by a secure module based on a static
seed. However, since it depends on a seed value to operate,
it is vulnerable to oracle-guided SAT attacks if the attacker
deciphers the seed value as the initial key. Gate-Lock [36]
uses an approach focused on locking gates; the resulting key
to use the circuit changes depending on the input needed. In
addition, K-Gate Lock [37] is based on input encoding and can
be fully implemented using combinational logic without the
need for state-holder components. However, neither provides
any structural benefit against dataflow and removal attacks.

While each state-of-the-art multi-key logic locking method
aims to secure against a different attack, our goal in this
paper is to propose low-overhead multi-key solutions at both
the RTL-level and netlist-level that are secure against all the
above-mentioned attacks.

III. CUTE-LOCK FAMILY

In this section, after explaining the terminology, we discuss
our proposed methods of locking a circuit with multiple
keys; the first one, called Cute-Lock-Beh, is an RTL-level
sequential logic locking approach that is secure against oracle-
guided attacks and requires different key values based on
different clock cycles to operate correctly. The second method,
called Cute-Lock-Str, is a netlist-level implementation of our
behavioral solution that resists not only oracle-guided SAT
attacks but also dataflow and removal attacks.

A. Terminology

In the context of Cute-Lock family, it is crucial to under-
stand the terminology used to describe the components:



Fig. 1: Cute-Lock-Beh STG example

n: Number of inputs to the circuit.
k: Number of key values (multiple keys, in contrast to tradi-

tional logic locking algorithms that used a single key).
ki: Number of bits in each key value (i.e., the key size).
c: Number of clock cycles for the counter, determining when

specific keys must be provided.
m: Number of layers in the MUX tree equal to log2(k) + 1.

B. Behavioral Solution

For RTL-level sequential circuit, the core idea is to require
a specific key value based on the time count for the circuit
to behave as intended. When an incorrect key is provided to
a particular clock cycle, the circuit transitions to a random,
incorrect state. Fig. 1 demonstrates how Cute-Lock-Beh af-
fects the high-level State Transition Graph (STG) using a 1001
sequence detector example. Here, we can see that the keys
and counter work together to handle the state transition for
the next state, and whenever the wrong key is provided, a
wrongful state transition is taken. Implementing Cute-Lock-
Beh requires minimal changes to the RTL code. The only
additions are a counter and the wrongful state transitions when
a wrong key is provided. These wrongful state transitions are
added to the FF logic, where the present state updates occur.
Here are the components of the sequence detector example in
Fig. 1:
1. Original STG: The original STG for detecting a 1001

sequence as a mealy machine. Also, it serves as the same
STG whenever the correct keys are provided.

2. Encrypted STG: The encrypted STG with four keys, 4
bits each, and a 2-bit counter. The correct state transition
would be determined by the counter, along with providing
the proper key. If the wrong key is provided, a wrongful
state transition is taken.

3. Wrongful STG: The incorrect STG is constructed of
random state transitions defined at the RTL-level.

While Cute-Lock-Beh does not represent a significant
change in the RTL-level representation, if one plans to convert

a given netlist back to STG format, they face the state
explosion problem [38]. Thus, currently, we have used Xilinx
Vivado to implement Cute-Lock-Beh that use MUXs instead
of redesigning the STG from the ground up. However, in
this case, while it provides security against oracle-guided
SAT attacks, it does not provide substantial structural benefits
against removal attacks. Thus, it requires another step of
obfuscation on top of the behavioral method. To address this
issue, we discuss a more efficient structural solution with lower
overhead in Section III-C.

C. Structural Solution

In Cute-Lock-Str, instead of transitioning to a random
state upon wrong key insertion, it moves to a different state
predefined by existing state transitions. Fig. 2 demonstrates
how Cute-Lock-Str affects the State Transition Table (STT)
using the same 1001 sequence detector used in Fig. 1:
1. STT: The STT for the 1001 sequencer detector along

with wrongful state transition. The highlighted column
(NS Q0+*) indicates values for “NS Q0+” whenever the
wrong keys are provided. This will make up the new
wrongful state transition. In this case, the hardware from
“NS Q1+” is repurposed to be used on wrongful state
transition. For example, if the current state (PS Q1, PS
Q0) is “00” and input X is 1, the next state (NS Q1+,
NS Q0+) should be “01”, but when a wrong key-counter
combination is given, it will stay at state “00”.

2. Wrongful STG: The incorrect STG is constructed from
“NS Q1+” and “NS Q0+*”.

The FFs in the structural solution are connected through
a tree of MUXs illustrated in Fig. 3. The gray clouds show
the correct hardware for the FF to perform the state transition
correctly, and the red clouds show the hardware of another
FF that would accomplish the wrongful state transition. The
MUX tree allows the ability to lock an FF with multiple keys
synchronized with a counter and enables the FFs to utilize
incorrect hardware when the wrong key is provided at a
specific time. The MUX tree is made up of m layers, where
m is log2(k) + 1. Each layer consists of the following:
1st Layer: The first layer of MUXs verifies that the cor-

rect key has been provided, denoted by keyinput1 to
keyinputki

. This layer also defines the key size ki, which
is determined by the select size of the multiplexer. The
number of different wrongful hardware configurations is
given by 2ki−1. In Fig. 3, the keys are 00, 10, 00, and 10

Fig. 2: Cute-Lock-Str STG & STT example



Fig. 3: Cute-Lock-Str MUX tree example

in respective counter times. The key sizes and wrongful
hardware are denoted by the 4-to-1 MUXs.

2nd,3rd, ..., (m− 1)th Layers These layers are controlled
by the counter to select the correct MUX. The counter
values are divided at each subsequent layer. The MUXs
at these layers determine whether to use the top or bottom
connection based on the previous counter values applied
in the bottom MUXs. The check is performed by OR-ing
all the counter times in the previous MUXs and feeding
the result into the select input of the current MUX.

mth Layer The output of the final MUX is fed into the FF.
The MUX-tree has a width of log2(k) + 1 and a height of

k where k is the number of distinct keys to lock the FFs.
When using Cute-Lock-Str, it is possible to lock any number
of FFs. While locking one FF with different keys is enough
to resist oracle-guided SAT attacks, locking more FFs would
provide more resilience against dataflow and removal attacks.

IV. EXPERIMENTAL RESULTS

We conduct experiments on a Windows 11 machine, which
accesses Linux Ubuntu 22.04 via WSL2. The machine is
an Intel 13900H with 14 cores and 32 threads at 2.6 GHz
and 56 GB of DDR5 RAM. First, we validate the Cute-
Lock family and then test them against oracle-guided SAT
attacks. Next we test Cute-Lock-Str against dataflow and
removal attacks and finally implement it on Cadence Genus to
analyze and compare the overhead with state-of-the-art works.

1 CNS, 2 x..x, 3 FAIL, 4 Equal 5 N/A

In the tables, different colors are used to indicate specific
conditions. The color light red1 represents the “condition not
solvable” status. A deeper red2 signifies a wrong key, while
the darkest red3 indicates that the attack failed. Green4 denotes
that the correct key has been found. Yellow5 means the attack
did not report any key within the time limit of 20 hours. The
source codes and created benchmarks of Cute-Lock family
are publicly available on our GitHub repository1.

A. Algorithm Validation

The validation of Cute-Lock is done in Xilinx Vivado.
Locking benchmarks with the same key values (i.e., reduced
to a single-key solution) leads to SAT attacks from NEOS [39]
and RANE [13] to find the correct key as expected.

TABLE I: Cute-Lock-Beh validation

Inputs Outputs
Time (ns) x[7:0] y[38:0] yck[38 : 0] ywk[38 : 0]

0 0 0 0 0
60 2aaaa 0 0 400000000

100 3c3c3 2000002007 2000002007 00000000e
120 3c3c3 1800000002 1800000002 00000000e
160 2aaaa 0 0 00000000e
200 3c3c3 1800000002 1800000002 000071
220 2aaaa 400240 400240 91
240 2aaaa 0 0 91
260 2aaaa 0 0 91
280 2aaaa 0 0 2004
300 0 0 0 2004
320 0 0 0 0
340 0 0 0 0
360 0 0 0 0
380 0 20000002007 20000002007 e
380 3c3c3 1800000002 1800000002 e

1) Behavioral Solution: For Cute-Lock-Beh algorithm val-
idation, we lock the bcomp benchmark from the Synthezza
suite [40] with 19 key-bit values. When the correct key values
are provided, both the original and the locked circuit behave
the same, as shown in Table I, where columns yck and ywk

are the outputs under the correct and wrong keys, respectively.

TABLE II: Cute-Lock-Str validation

Inputs Outputs
Time (ns) G0 G1 G2 G3 G17 G17ck G17wk

0 0 1 0 1 x x x
20 1 0 1 0 1 1 1
40 1 1 0 0 1 1 1
60 1 1 1 0 1 1 1
80 0 1 0 1 1 1 1

100 1 0 1 0 1 1 1
120 0 0 0 0 1 1 1
140 1 1 1 1 1 1 0
160 0 0 1 1 0 0 0
180 1 0 0 1 0 0 1
200 0 1 1 0 0 0 0
220 0 1 1 1 0 0 1
240 1 1 0 1 1 1 1
260 0 0 0 1 1 1 1
280 1 0 1 1 1 1 0

2) Structural Solution: For the Cute-Lock-Str algorithm
validation, s27 from ISCAS’89 [41] is locked using the
following keys: 1, 3, 2, 0. When the correct key values are
provided, the original and the locked circuit behave equally,

1https://github.com/cars-lab-repo/Cute-Lock



TABLE III: Cute-Lock-Beh security against logic attacks
Benchmark and Locking Information NEOS [39]

Synthezza [40] Circuit # Keys (k) Key Size (ki ) BBO INT KC2
Sm

al
l

bcomp 6 18 6m25.446s 0m0.885s 0m1.030s
bech 6 18 6m4.845s 0m0.723s 0m0.838s
bridge 5 16 3m28.614s 0m0.100s 0m0.182s
cat 3 11 15m1.161s 0m0.772s 0m0.680s
checker9 3 10 3m0.931s 0m0.842s 0m0.803s
cpu 4 14 2m11.658s 0m0.732s 0m0.799s
dmac 2 7 1m45.751s 0m0.623s 0m0.681s
e10 3 10 3m17.832s 0m0.816s 0m1.033s
e15 4 13 8m59.511s 0m1.361s 0m1.462s
e16 4 13 7m50.966s 0m0.774s 0m0.918s
e161 5 16 2m53.761s 0m0.731s 0m0.759s
e17 2 8 15m0.543s 0m0.522s 0m0.607s

M
ed

iu
m

acdl 5 16 14m47.149s 0m0.641s 0m1.157s
alf 0 31 0m0.180s 0m0.107s 0m0.469s
amtz 7 23 14m9.747s 0m2.227s 0m2.727s
ball 4 44 15m5.744s 0m1.162s 0m4.998s
bens 7 21 15m3.290s 0m18.365s 0m19.804s
berg 7 21 10m5.736s 0m1.730s 0m2.531s
bib 7 21 15m3.795s 0m2.750s 0m3.324s
big 6 18 11m14.492s 0m0.658s 0m1.163s
bs 6 19 9m52.679s 0m0.600s 0m0.895s
codec 2 4 15m2.282s 0m2.252s 0m2.032s
codec1 2 9 28 15m4.756s 0m3.768s 0m4.005s
cow 6 49 15m7.930s 0m1.225s 0m4.587s
cyr 6 20 14m7.341s 0m2.375s 0m3.072s
dav 6 18 15m3.939s 0m0.519s 0m1.019s
doron 7 22 13m49.117s 0m2.854s 0m4.004s

L
ar

ge

absurd 21 65 15m25.370s 0m40.360s 1m9.523s
bulln 20 61 15m23.190s 1m19.553s 8m7.918s
camel 19 59 16m29.513s 3m38.506s 14m34.180s
exxm 15 47 15m52.984s 3m46.605s 3m43.372s
lion 18 55 15m37.603s 1m31.160s 4m26.537s
tiger 17 51 15m50.498s 0m37.245s 1m54.818s

as shown in Table II, where G17ck and G17wk represent the
output of the circuit when the correct keys and the wrong keys
are provided, respectively.

B. Logic Attacks Evaluation

One of the main objectives of Cute-Lock family is to
generate a locking mechanism that oracle-guided SAT at-
tacks will not be able to decrypt. In this section, we will
test Cute-Lock-Beh and Cute-Lock-Str against SAT-based
oracle-guided attacks.

1) Behavioral Solution: To test Cute-Lock-Beh, we gener-
ate locked versions of the Synthezza benchmark suite [40] in
Verilog format, then use Yosys [42] to convert to .blif format.
While the files are in .blif format, it is necessary to convert
some FFs into latches. Then, ABC [43] is used to convert to
.bench format, which is used to run the SAT attacks using
NEOS [39]. None of the benchmarks run provide the correct
keys as shown in Table III.

2) Structural Solution: To evaluate Cute-Lock-Str, we
generate locked versions of ISCAS’89 [41] and ITC’99 [44].
The encryption is done in .bench format with our Python im-
plementation of Cute-Lock-Str and tested against NEOS [39]
and RANE [13] attacks. None of the benchmarks run provide
the correct keys as shown in Table IV.

C. Removal Attacks Evaluation

As mentioned before, Cute-Lock-Beh does not add much
benefit to security against removal attacks; however, Cute-
Lock-Str allows the circuit to resist against them.

1) Dataflow Attack: To execute DANA [9], we synthe-
size the ITC’99 [44] benchmarks using Xilinx Vivado. After
preparing the netlists, we apply the DANA script to analyze
the dataflow and generate the resulting register clusters. DANA
does not provide a simple pass/fail output. Instead, it produces
clusters that represent potential high-level registers within the

TABLE IV: Cute-Lock-Str security against logic attacks
Benchmark and Locking Information NEOS [39] RANE [13]

Circuit # keys (k) Key Size (ki ) BBO INT KC2 RANE

IS
C

A
S’

89
[4

1]

s1196 4 14 1m20.096s 0m0.694s 0m0.753s 0m1.667s
s13207 8 31 15m5.270s 0m15.520s 0m19.852s 0m35.909s
s1488 2 8 1m37.663s 0m0.672s 0m0.723s 0m1.224s
s15850 4 14 15m9.218s 0m12.460s 0m14.394s 0m20.279s
s298 2 3 0m0.043s 0m0.474s 0m0.474s 0m0.798s
s349 4 9 7m21.210s 0m0.672s 0m0.695s 0m0.964s
s35932 8 35 15m5.694s 3m43.671s 4m9.463s 3m31.814s
s510 8 19 0m35.772s 0m0.539s 0m0.540s 0m0.942s
s5378 8 35 7m50.965s 0m1.287s 0m1.486s 0m3.591s
s641 8 35 0m58.063s 0m0.804s 0m1.191s 0m1.326s
s713 8 35 0m56.985s 0m0.624s 0m0.659s 0m1.234s
s832 8 18 0m49.561s 0m0.563s 0m0.603s 0m1.080s
s9234 8 19 15m4.725s 6h44m50s 7h56m45s 50m 6.04s
s953 4 15 0m52.608s 0m0.826s 0m0.127s 2h6m4.59s

IT
C

’9
9

[4
4]

b01 2 2 0m0.296s 0m1.023s 0m0.882s 9m6.02s
b02 2 2 0m0.143s 0m0.487s 0m0.653s 10m39.54s
b03 2 4 15m0.528s 0m0.473s 0m0.653s 13m6.39s
b04 4 11 0m52.426s 0m0.820s 0m0.194s 4h5m53.21s
b05 2 2 0m0.153s 0m0.097s 0m0.089s 0m0.415s
b06 2 1 0m0.151s 0m0.402s 0m0.165s 0m0.441s
b07 2 2 0m0.163s 0m0.739s 0m0.863s 0m0.544s
b08 4 9 0m14.811s 0m0.600s 0m0.186s 14m34.59s
b09 2 1 0m0.250s 0m0.658s 0m0.698s 0m0.560s
b10 4 11 0m16.103s 0m0.719s 0m0.206s 16m48.31s
b11 2 7 1m36.385s 0m1.699s 0m0.256s 23m17.52s
b12 2 5 16m20.762s 1m24.733s 0m0.261s 1h27m50.43s
b14 8 32 15m3.473s 1m55.654s 0m1.083s 19m39.38s
b15 16 36 14m3.219s 20m0.006s 0m4.006s 40m34.59s
b17 16 37 17m1.496s 20m0.008s 20m0.011s 20h0m0.35s
b18 16 37 0m0.320s 0m0.258s 0m0.252s 1h59m18.06s
b19 8 24 0m0.538s 0m0.574s 0m0.752s 18h6m12.74s
b20 8 32 15m6.045s 6m20.914s 0m4.988s 0m57.046s
b21 8 32 15m11.598s 6m49.946s 0m5.389s 0m59.616s
b22 8 32 15m24.620s 20m0.005s 2m41.473s 2m24.392s

circuit. These clusters are then evaluated using the Normal-
ized Mutual Information (NMI) metric, which measures how
closely DANA’s output matches the ground truth or, in our
case, the original circuit. An NMI value of “0” means the tool
fails to identify the correct register groupings, while an NMI
value of “1” means that DANA’s output perfectly matches the
reference design. In the original study, DANA was able to
get very high NMI scores in the range of 0.87 to 0.99 and
an average of 0.95 when compared against the ground truth.
When we run DANA against locked benchmarks with Cute-
Lock-Str, as shown in Table V, it is clear that the NMI scores
accuracy drops significantly to a wide range of 0.00 to 0.99 and
an average of 0.41. These results demonstrate that Cute-Lock-
Str changes the dataflow in most of the locked benchmarks
compared to the original benchmarks and thus Cute-Lock-
Str is able to increase resiliency against dataflow attacks and

TABLE V: Cute-Lock-Str security against removal attacks

DANA [9] FALL [10]
Circuit NMI Score Candidates Keys CPU Time (s)

b01 0.00 0 0 0.1
b02 0.00 0 0 0.1
b03 0.00 0 0 0.1
b04 0.00 0 0 0.1
b05 0.00 0 0 0.2
b06 0.00 0 0 0.1
b07 0.74 0 0 0.1
b08 0.99 0 0 0.1
b09 0.43 0 0 0.1
b10 0.00 0 0 0.1
b11 0.76 0 0 0.1
b12 0.99 0 0 0.1
b14 0.60 0 0 10.9
b15 0.89 0 0 16.8
b17 0.93 0 0 97.3
b18 0.93 0 0 1663.6
b19 0.50 0 0 3423.4
b20 0.56 0 0 23.4
b21 0.44 0 0 23.7
b22 0.39 0 0 46.4
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Fig. 4: Overhead comparison of Cute-Lock-Str with DK-Lock [33]

deteriorate reverse engineering in sequential benchmarks.
2) Functional Analysis Attack: FALL [10] is designed to

work with circuits in .bench format, which we use to test
against our locked circuits. In the original study, FALL is
reported to be successful against 65 out of 80 locked circuits
(81% success rate). When we run FALL against locked circuits
with Cute-Lock-Str on ITC’99 benchmarks [44], the FALL
attack fails to find any key (0% success rate) as shown
in Table V. This result demonstrates that our Cute-Lock-
Str defense is resilient against this type of attack as well.

D. Overhead Analysis

Now, we look at how much overhead Cute-Lock-Str adds
to circuits and compare it with state-of-the-art multi-key logic
locking method DK-Lock [33]. It is worth noting that DK-
Lock is not fully secure since it is vulnerable against unrolling
attacks such as [31] while as shown in Sections IV-B and IV-C,
Cute-Lock-Str is secure against all existing attack surfaces.

For the overhead comparison, we focus on four key aspects:
power usage, circuit area, number of cells, and number of
I/O ports. To evaluate the overhead of Cute-Lock-Str, we
use circuits from the ITC 99 [44] benchmark set. We convert
.bench files to Verilog using the ABC tool [43]. Then, we use
Cadence Genus with a 45nm process to synthesize and get the
overhead values. We test the following three configurations:

• Test Run 1: 2 keys, n bits each (k = 2, ki = n)
• Test Run 2: 4 keys, 3 bits each
• Test Run 3: 16 keys, 5 bits each
For DK-Lock, we use two setups: one with 10-bit keys and

another where the key size changes linearly based on the inputs
to the circuit (i.e., n = k). In Figure 4, the green dashed line
shows the average of these DK-Lock setups. Looking at the
figure 4, we can see that as circuits get larger, the extra power,
area, and cells needed for Cute-Lock-Str get smaller. This
means Cute-Lock-Str scales well for large circuits. While

the smallest circuit might use about 100% more power, for
the largest ones, it is less than 1%. In addition, for large
circuits (b14-b22), both Cute-Lock-Str and DK-Lock do not
add much overhead. But for smaller and medium-sized circuits
(b01-b11), our Test Run 1 and Test Run 2 do a better job than
DK-Lock. For example, for the b06 benchmark, Cute-Lock-
Str uses about 30% less power, area, and cells compared to
DK-Lock. It is worth noting that the DK-Lock data does not
include the b20, b21, and b22 benchmarks, and this is why,
in the graphs, there is a line jump.

V. CONCLUSION

In this paper, we introduced Cute-Lock, a novel time-based
multi-key logic locking family with two variants: Cute-Lock-
Beh for RTL-level behavioral locking and Cute-Lock-Str for
netlist-level structural locking. We demonstrated the resilience
of the Cute-Lock family against state-of-the-art oracle-guided
SAT attacks incorporated in NEOS [39] and RANE [13] across
a wide range of benchmarks. We showed that Cute-Lock-
Str improves structural integrity and is resistant to DANA
[9] and FALL [10] attacks. In addition, we showed that
Cute-Lock-Str adds minimal overhead, particularly for large
circuits.

Overall, the Cute-Lock-Str effectiveness against both
oracle-guided and removal attacks, coupled with its low over-
head, makes it a promising practical solution for protecting
hardware IPs in the semiconductor supply chain. For future
works, multi-key solutions can be explored to address other
hardware security problems, such as hardware Trojan detection
and mitigation.
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