
K-Gate Lock: Multi-Key Logic Locking Using Input Encoding
Against Oracle-Guided Attacks

Kevin Lopez
Computer Engineering & Computer Science Department

California State University, Long Beach
Kevin.LopezChavez01@student.csulb.edu

Amin Rezaei
Computer Engineering & Computer Science Department

California State University, Long Beach
Amin.Rezaei@csulb.edu

ABSTRACT
Logic locking has emerged to prevent piracy and overproduction
of integrated circuits ever since the split of the design house and
manufacturing foundry was established. While there has been a lot
of research using a single global key to lock the circuit, even the
most sophisticated single-key locking methods have been shown to
be vulnerable to powerful SAT-based oracle-guided attacks that can
extract the correct key with the help of an activated chip bought off
the market and the locked netlist leaked from the untrusted foundry.
To address this challenge, we propose, implement, and evaluate a
novel logic locking method called K-Gate Lock that encodes input
patterns using multiple keys that are applied to one set of key inputs
at different operational times. Our comprehensive experimental
results confirm that using multiple keys will make the circuit secure
against oracle-guided attacks and increase attacker efforts to an
exponentially time-consuming brute force search. K-Gate Lock has
reasonable power and performance overheads, making it a practical
solution for real-world hardware intellectual property protection.

CCS CONCEPTS
• Security and privacy→ Security in hardware.

KEYWORDS
Logic Locking, Logic Encryption, Logic Obfuscation, SAT Attack,
Multi-Key Locking, Dynamic Locking, Input Encoding

ACM Reference Format:
Kevin Lopez and Amin Rezaei . 2025. K-Gate Lock: Multi-Key Logic Locking
Using Input Encoding Against Oracle-Guided Attacks. In 30th Asia and
South Pacific Design Automation Conference (ASPDAC ’25), January 20–23,
2025, Tokyo, Japan. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3658617.3697764

1 INTRODUCTION
In this split of design and manufacturing, one company designs the
digital design, while another handles the physical fabrication of the
Integrated Circuit (IC). While this separation of tasks poses a threat
to chip security, logic locking [1, 2] has emerged as a promising
solution to prevent piracy and overproduction of hardware Intellec-
tual Properties (IPs). Formally speaking, logic locking is the process

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPDAC ’25, January 20–23, 2025, Tokyo, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0635-6/25/01
https://doi.org/10.1145/3658617.3697764

of adding additional inputs to an IC, called key bits, to prevent the
correct operation of the IC when the incorrect key is provided to
the circuit. Traditionally, locking has been done using only one
global key, which made it susceptible to the SAT-based attack [3]
that extracts the key using an oracle (i.e., a working chip bought
off the market) and a locked netlist leaked from an untrustworthy
foundry. While there have been attempts to reduce the success of
the SAT-based attack to brute-force [4, 5], sophisticated attacks
have been proposed to find out the correct key of these methods.

We believe that the vulnerabilities associated with a single static
key can be effectively mitigated through multi-key logic locking. In
this paper, we introduce an advanced multi-key approach called K-
Gate Lockwhere the inputs of each gate are encoded with different
key values. To activate the circuit correctly, these values must be
provided in the specific sequence used during the encoding process.
In this paper, we present the following contributions:
• Proposing a robust multi-key logic locking based on input
encoding, implemented fully in combinational logic;
• Implementing an efficient algorithm to lock a circuit with
multiple user-defined keys with tunable time complexity;
• Generating more than 40 benchmarks based on the proposed
method, measuring the overhead, and evaluating its security
against state-of-the-art oracle-guided attacks.

2 BACKGROUND AND RELATEDWORK
In this section, we first consider the evolution of logic locking
techniques as well as oracle-guided attacks, and then review the
existing efforts in multi-key logic locking.

2.1 Logic Locking Techniques
Initial techniques of logic locking rely on single-key schemes, pri-
marily employing xor-based and mux-based mechanisms [1, 2].
In xor-based logic locking, the key bits are matched with random
inverters and buffers. Then, the xor gates controlled by key bits
are used to replace selected buffers and inverters. Additionally,
mux-based logic locking selects random wires and substitutes them
with 2-1 muxs whose inputs are real signals and random dummy
ones, and selectors are the key bits. However, advancements in SAT
solvers have been utilized to expose vulnerabilities in these meth-
ods [3], leading to the development of more robust techniques such
as Anti-SAT [4], SAR-Lock [5], TT-Lock [6], CAS-lock [7], BLE [8],
DLE [9], Full-Lock [10], Cross-Lock [11], HLock [12], TraceLL [13],
TriLock [14], and others [15–27] that increase the time complexity
of attacks. Obfus-Lock [28] is proposed to leverage the skewness of
nodes to construct a locked circuit and obfuscate the circuit using
re-write rules. Furthermore, a theoretical method has been pro-
posed to achieve both high query complexity and key error rates

https://doi.org/10.1145/3658617.3697764
https://doi.org/10.1145/3658617.3697764
https://doi.org/10.1145/3658617.3697764

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Kevin Lopez and Amin Rezaei

based on quasi-universal circuits, including convolutional biased
target circuits [29]. In addition, recently, a sequential obfuscation
solution called STATION [30] has been proposed by leveraging
disjoint encoding and combinational logic locking techniques. A
comprehensive overhead and security analysis of state-of-the-art
logic locking methods is also done in [31]. Despite the mentioned
efforts, single-key solutions remain susceptible once the key is com-
promised, endangering the entire security of the hardware IPs.

2.2 Oracle-Guided Attacks
Boolean SAT solvers are used to reveal the correct key of logic-
locked circuits using an oracle (i.e., an activated IC bought off the
market) and a locked netlist to prune out the wrong key values [32–
35]. The SAT-based attack [3] uses Distinguishing Input Patterns
(DIPs) that are specifically designed to exploit the discrepancies be-
tween the locked circuit and the oracle by targeting and identifying
incorrect key values. The more incorrect key values the SAT solver
eliminates in one iteration, the faster the attack can find the correct
key. Then on, each attack has been strategically designed to target
a specific defense mechanism; for example, Double DIP [36] is used
for attacking ICs locked with SAR-Lock [5], where using two DIPs
instead of one helps find the correct key faster. AppSAT [37] uses
an approximate flow to find the probably-approximate-correct key
in Anti-SAT [4] method. Fa-SAT [38] inserts a single stuck-at fault
at each signal of the locked circuit iteratively to find the correct
key of BLE [8]. The assumption in all the above attacks is that there
is a single static key in the logic-locked circuit to be deciphered.

2.3 Multi-Key Approaches
Recent works have brought the possibility of multi-key solutions.
Specifically, DK-Lock [39] is a sequential locking method where
one must provide two keys to a circuit; the first key is the activa-
tion key, which must be provided for a constant amount of time
to activate the circuit, and then a functional key right after. DK-
Lock may be susceptible to unrolling attacks [32] that can expand
the key size to reverse the method back to a single-key solution.
SLED [40] is another multi-key sequential solution but requires
latches that operate on a clock, introducing additional complexity
for combinational circuits. In addition, it depends on a seed value
(i.e., a primary key) to operate, which can eventually be reduced to
a single-key model since the attacker only needs to find out the seed
value. Both of the mentioned multi-key logic locking methods may
still be reverted back to a single-key model and thus susceptible to
traditional SAT-based oracle-guided attacks. In addition, they depend
on sequential components to be implemented.

Another multi-key logic locking solution, Gate-Lock [41], uses
an approach focused on locking gates, resulting in circuits that are
resilient to SAT attacks. In Gate-Lock, the truth table has a height
of 2𝑛+𝑘 while our proposed method maintains the same input size
height of 2𝑛 and only locks the outcomes within the truth table that
are true. This allowed us to implement a more efficient algorithm.

3 MULTI-KEY LOGIC LOCKING
In this section, after explaining the terminology, we discuss our
proposed methods of locking a circuit with multiple keys; the first
one locks the whole circuit, and it needs to generate a truth table for

all the input combinations on the circuit, which may not be efficient
in terms of space and time complexity. The second method, called
K-Gate Lock, is a derivation but more optimized than the first
one to focus on encoding the input combinations of the gates with
specific key values. We also thoroughly discuss the implementation
of the K-Gate Lock and evaluate the theoretical time complexity
for any future oracle-guided attack to find the correct keys. An
implementation example of K-Gate Lock on the c17 circuit from
ISCAS 85 benchmarks [42] is shown in Figure 1. You may refer to
Table 1 which contains the sequence of keys necessary to operate
this locked circuit.

3.1 Terminology
In the context of K-Gate Lock, it is crucial to understand the
terminology used to describe the various components and concepts:
n: The total number of inputs to the original circuit.
g: The maximum number of gates to be locked within a circuit.
k: The number of inputs to a gate is often called the level of locking.
gate key: Each gate in a locked circuit has a specific key that

controls its operation based on the input combination.
key bit: The individual binary elements that constitute a key.
m: The total number of bits in a key, aggregated from all key bits

associated with each locked gate.
keys: Our approach uses keys derived from gate key combinations,

with the specific key depending on the input.

3.2 Locking the Whole Circuit
The brute force method of locking a combinational circuit using
multiple keys requires expanding the logic table of all the circuit’s
possible input/output combinations. Multiple keys can be inserted
into each input/output combination when all the inputs and outputs
are expanded. The truth table will maintain a size of 2𝑛 since it does
not create every combination of keys; it only adds the desired keys
to an input combination. This brute force approach to locking a
whole circuit is impractical because it would lead to an exponential-
size truth table, and the implementation of locking a circuit would
be time-consuming. For example, the C432 circuit in ISCAS 85
produces a truth table of 68,719 million rows, which is extremely
large for one of the smallest benchmarks in ISCAS 85 suite. This
motivated us to introduce K-Gate Lock.

3.3 K-Gate Lock Algorithm
K-Gate Lock operates by locking specific gates within the circuit
rather than the entire IC. This method utilizes the truth table of a
gate or a more complex expression (i.e., a deep gate), encoding key
bits directly into it. To operate the circuit, the user must provide
a combination of inputs along with the corresponding keys in the
correct sequence.

Now, we discuss the steps for locking a circuit based on the
circuit example in Figure 1, which is locked at 𝑘 = 2 with the key
values of 01, 11, 10, and 11.

1. Inputs: The algorithm requires an input of the original cir-
cuit, unique keys, the maximum number of gates to lock (i.e., 𝑔),
and a chosen level of gate locking (i.e., 𝑘). It is worth noting that
the height of the truth table must be greater than the number of
keys.

K-Gate Lock: Multi-Key Logic Locking Using Input Encoding Against Oracle-Guided Attacks ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

Figure 1: K-Gate Lock Example

2. Gate Selection: In the second phase of the process, themain
task is determining which gates to lock, using the variable 𝑘 as a
guide. The gates needed to be locked are those that have the number
of absolute inputs equal to the input value 𝑘 . For example, while
locking the C17 benchmark shown in Figure 1:

• G10 has two absolute inputs (𝑘 = 2), G1 and G3.
• G11 has two absolute inputs (𝑘 = 2), G3 and G6.
• G19 contains three absolute inputs (𝑘 = 3), which are G7,
G3, and G6.
• G16 contains three absolute inputs (𝑘 = 3), which are G2,
G3, and G6.

Since the initial constraint is to lock at 𝑘 = 2, only G10 and G11
are selected.

3. Key Insertion: Up to this point, the algorithm has selected
what gates to lock. In this step, the keys are inserted into the gate
logic. For the C17 benchmark, as shown in Figure 1, truth tables
are expanded for the expressions (𝐺1 ∧𝐺3) and (𝐺3 ∧𝐺6), and
the key bits are added as defined in the initial contains.

For deeper gates (i.e., 𝑘 > 2), it is necessary to have the absolute
input to know when each key should be applied. It is also possible
to maintain the original connections to the gate by using the inputs
to the logic gate and adding them to the truth table. After the keys
are added to the truth table, the expression can be extracted and
simplified using any simplification method, like Karnaugh maps.

Table 1: Circuit Operation of Figure 1

k1 k2 k3 k4 G1 G2 G3 G6 G7 G22 G23

0 1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 1 0 1
0 1 1 1 0 0 0 1 0 0 0
0 1 1 1 0 0 0 1 1 0 1
1 1 1 0 0 0 1 0 0 0 0
1 1 1 0 0 0 1 0 1 0 1
1 1 1 1 0 0 1 1 0 0 0
1 1 1 1 0 0 1 1 1 0 0
0 1 0 1 0 1 0 0 0 1 1
0 1 0 1 0 1 0 0 1 1 1
0 1 1 1 0 1 0 1 0 1 1
0 1 1 1 0 1 0 1 1 1 1
1 1 1 0 0 1 1 0 0 1 1
1 1 1 0 0 1 1 0 1 1 1
1 1 1 1 0 1 1 1 0 0 0
1 1 1 1 0 1 1 1 1 0 0
1 0 0 1 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 1 0 1
1 0 1 1 1 0 0 1 0 0 0
1 0 1 1 1 0 0 1 1 0 1
1 1 1 0 1 0 1 0 0 1 0
1 1 1 0 1 0 1 0 1 1 1
1 1 1 1 1 0 1 1 0 1 0
1 1 1 1 1 0 1 1 1 1 0
1 0 0 1 1 1 0 0 0 1 1
1 0 0 1 1 1 0 0 1 1 1
1 0 1 1 1 1 0 1 0 1 1
1 0 1 1 1 1 0 1 1 1 1
1 1 1 0 1 1 1 0 0 1 1
1 1 1 0 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 1 1 1 1 0

4. Circuit Update: In this step, the algorithm updates the orig-
inal circuit with the new locked gates. As shown by step 4 of Fig 1,

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Kevin Lopez and Amin Rezaei

Algorithm 1 Circuit Locking

1: Input: Circuit 𝑓 (𝑥), keys, g (max gates to lock), level 𝑘 (default
𝑘 = 2)

2: Output: Locked circuit ℎ(𝑥, 𝑘)
3: 𝑔𝑎𝑡𝑒𝑠_𝑘_𝑖𝑛𝑝𝑢𝑡𝑠 ← 𝑔𝑒𝑡_𝑔𝑎𝑡𝑒𝑠_𝑤𝑖𝑡ℎ_𝑘_𝑖𝑛𝑝𝑢𝑡𝑠 (𝑓 (𝑥), 𝑘, 𝑔)
4: ℎ(𝑥, 𝑘) ← 𝑓 (𝑥)
5: for each gate in 𝑔𝑎𝑡𝑒𝑠_𝑘_𝑖𝑛𝑝𝑢𝑡𝑠 do
6: 𝑙𝑜𝑐𝑘𝑒𝑑_𝑔𝑎𝑡𝑒 ← 𝑙𝑜𝑐𝑘_𝑔𝑎𝑡𝑒_𝑤𝑖𝑡ℎ_𝑘𝑒𝑦 (𝑔𝑎𝑡𝑒, 𝑘𝑒𝑦𝑠)
7: ℎ(𝑥, 𝑘) .𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝑔𝑎𝑡𝑒, 𝑙𝑜𝑐𝑘𝑒𝑑_𝑔𝑎𝑡𝑒)
8: end for
9: return ℎ(𝑥, 𝑘)

Algorithm 2 Gate Locking
1: Function lock_gate_with_key (gate, keys)
2: Input: 𝑔𝑎𝑡𝑒 , 𝑘𝑒𝑦𝑠
3: Output: 𝑙𝑜𝑐𝑘𝑒𝑑_𝑔𝑎𝑡𝑒
4: 𝑡𝑎𝑏𝑙𝑒 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑙𝑜𝑔𝑖𝑐_𝑡𝑎𝑏𝑙𝑒 (𝑔𝑎𝑡𝑒.𝑖𝑛𝑝𝑢𝑡𝑠, 𝑔𝑎𝑡𝑒.𝑜𝑢𝑡𝑝𝑢𝑡)
5: 𝑙𝑜𝑐𝑘𝑒𝑑_𝑔𝑎𝑡𝑒 ← ()
6: for each (𝑖𝑛𝑝𝑢𝑡𝑠, 𝑜𝑢𝑡𝑝𝑢𝑡) in 𝑡𝑎𝑏𝑙𝑒 do
7: for each 𝑘𝑒𝑦 in 𝑘𝑒𝑦𝑠 do
8: 𝑙𝑜𝑔𝑖𝑐_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ← ((𝑘𝑒𝑦 + 𝑖𝑛𝑝𝑢𝑡𝑠) → 𝑜𝑢𝑡𝑝𝑢𝑡)
9: 𝑙𝑜𝑐𝑘𝑒𝑑_𝑔𝑎𝑡𝑒 ← 𝑙𝑜𝑔𝑖𝑐_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛

10: end for
11: end for
12: return 𝑙𝑜𝑐𝑘𝑒𝑑_𝑔𝑎𝑡𝑒
13: End Function

the locked G10 and G11 are placed instead of the original gates.
Gates can be connected to the absolute inputs or the original inputs.

5. Circuit Operation: To operate the locked circuit, one must
input the correct keys used to encode the gates. For the example
shown in Figure 1, the truth table is shown in Table 1, where G1,
G2, G3, G6, and G7 are the inputs and G22 and G23 are the outputs.

The K-Gate lock implementation is shown in Algorithms 1 and
2; it relies on two functions: one to lock an individual gate and
another to lock the entire circuit. In other words, the main focus of
Algorithm 1 is to find the gates to lock based on the given 𝑘 and
replace the gates with the locked ones generated from Algorithm 2.
The main focus of Algorithm 2 is to lock an individual gate with
a given set of dynamic keys. To attach the keys, it is necessary
to generate the truth table of the gate’s absolute inputs and then
attach the given dynamic key.

3.4 Time Complexity
Now, we explain the time complexity of K-Gate Lock, which de-
pends on the following:

Number of Gates to Lock (min{𝑛
𝑘
, 𝑔}): This number represents

how many gates the algorithm aims to lock, determined by 𝑔 and
𝑘 . The gates are chosen based on the level or absolute inputs they
handle, as specified by𝑘 . This is demonstrated by line 3 of Algorithm
1, which identifies the gates to be locked.

Gate Locking Complexity (2𝑘): The locking mechanism for
each gate involves encoding the gate key into the gate’s logic. This

Table 2: Number of Keys for the Height of 2𝑛 and 𝑔 Gates

𝑘1
1 ... 𝑘

|𝑘𝑒𝑦1 |
1 𝑘1

𝑔 ... 𝑘
|𝑘𝑒𝑦𝑔 |
𝑔 𝑖𝑛𝑝1 ... 𝑖𝑛𝑝𝑛

key 1 x ... x x ... x 0 ... 0
key 2 x ... x x ... x 0 ... 1
key 3 x ... x x ... x 0 ... 0
.
.

key 2𝑛 x ... x x ... x 1 ... 1

requires creating a truth table for the gate with all possible combi-
nations of inputs, resulting in 2𝑘 combinations. This step is shown
in line 4 of Algorithm 2, which generates the truth table for the gate,
and line 6, which encodes the gate key into the input combination.

Considering the above, the total time complexity can be repre-
sented as 𝑂 (min{𝑛

𝑘
, 𝑔} × 2𝑘). It is practical to fix 𝑘 at 2, leading to

a linear time complexity for locking a circuit.

3.5 Attack Analysis
For attack analysis, we show how the time complexity increases
for SAT-based oracle-guided attacks to find the correct keys in a
circuit locked withK-Gate Lock. We explore the idea of traditional
single-key SAT solvers and future multi-key SAT attacks that are
aware of the K-Gate Lock method.

Single-Key SAT Attack: Traditional SAT-based oracle-guided
attacks are configured to find one correct key for a given circuit.
Theoretically, such solvers are not suitable for finding multiple
keys of the K-Gate Lock and in the best scenario, they will end
up finding the first key of the sequence. We evaluate this with
experimental results in Section 4.

Multi-Key SAT Attack: In this case, the attacker is aware the
circuit is locked with K-Gate lock and needs to explore the keys
for every input combination as follows:
I) All input combinations: 2𝑛 possibilities (where 𝑛 is the number
of inputs) as shown by the height of Table 2.
II) All potential values for each key: 2𝑚 possibilities (where m is the
number of key bits). As shown in Table 2, the size of keys depends
on the number of gates locked and the size of each gate key. The
circuit designer has control over the total number of bits used and
the number of gates. The𝑚 parameter that depends on the number
of locked gates 𝑔 and the key size for each gate is determined by
the following equation:

𝑚 =

𝑔∑︁
𝑖=1
|𝑘𝑒𝑦 (𝑖) |

Although current SAT-based attacks implement optimizations to
prune several values of the global key, these optimizations cannot be
applied to K-Gate Lock because it uses a different key at every DIP.
Consequently, SAT-based attacks are forced to perform a brute-force
search for every key, resulting in a time complexity of 𝑂 (2𝑚+𝑛).

4 EXPERIMENTAL RESULTS
We conduct experiments on aWindows 11 machine, which accesses
Linux Ubuntu 22.04 via WSL2. The machine is a Ryzen 7940HS with
8 cores and 16 threads at 4.0 GHz and 32 GB of DDR5 RAM. The

K-Gate Lock: Multi-Key Logic Locking Using Input Encoding Against Oracle-Guided Attacks ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

Table 3: Attack Results on Benchmarks with Static Keys

Benchmark Gates Time (S) Reported Key
iscas85/c1355 3 0.08091 101101101
iscas85/c17 2 0.01133 101101
iscas85/c1908 3 0.1377 101101101
iscas85/c3540 3 1.576 101101101
iscas85/c432 3 0.03317 101101101
iscas85/c499 3 0.04950 101101101
iscas85/c5315 3 0.9743 101101101
iscas85/c7552 3 1.942 101101101
iscas85/c880 3 0.06435 101101101

source codes and created benchmarks of K-Gate Lock are publicly
available on our GitHub repository1.

4.1 Algorithm Validation
The algorithm validation is done in Python along with pyEDA [43],
a tool used for electronic design automation. In this case, 2 gates of
the c17 benchmark are locked with 4 different key combinations: 01,
11, 10, and 11. The truth tables are generated for the whole circuit
shown in Table 1 along with adding the correct key values; in this
case, the original circuit and the locked circuit output the same
value when the correct keys are fed in.

Another set of tests is done using Netlist Encryption and Obfus-
cation Suite (NEOS) [44], where circuits from ISCAS 85 [42] are
locked using multiple keys that remain the same value: 101, 101, 101.
When multiple constant keys are provided, the SAT-based attack
[3] is able to find out the correct key, meaning it is also possible to
achieve the level of locking based on the traditional logic locking
methods. The results are shown in Table 3.

4.2 Security Evaluation
The main objective of K-Gate Lock is to generate a locking mech-
anism that powerful SAT-based oracle-guided attacks will not be
able to decrypt. We use combinational benchmarks of ISCAS 85
[42] and EPFL Benchmarks [45] as well as sequential benchmarks
of ISCAS 89 [46]. Even though our proposed solution is based on
combinational circuits, it is also possible to lock sequential circuits,
locking portions of the circuit before including the flip-flops.

4.2.1 Three Dynamic Keys. Now, we perform SAT-based oracle-
guided attacks against the benchmarks locked with K-Gate Lock.
We use NEOS [44] and RANE [47] tools to run the attacks. The
encryption for each circuit is done in .bench files with our Python
implementation of K-Gate Lock.

The goal of this experiment is to demonstrate that with even a
minimal number of keys, SAT-based attacks are unable to determine
the correct keys. This limitation comes from their inherent design,
which is to find only one key. The results are shown in Table 4 in
which the circuits are locked with the following gate key values:
• b’011 - decimal value 3
• b’100 - decimal value 4
• b’101 - decimal value 5

1https://github.com/cars-lab-repo/KGL

Table 4: AttackResults on Benchmarkswith 3 Small Dynamic
Keys

Benchmark Gates NEOS RANE
Reported Key Time (S) Key Found Time (S)

iscas85/c1355 3 100100100 0.0941482 CNS 1.27
iscas85/c17 2 100101 0.0132606 011100 0.08
iscas85/c1908 3 101011011 0.179116 101100101 0.69
iscas85/c3540 3 011011011 1.95018 011011011 0.75
iscas85/c432 3 011100100 0.0301723 011100100 0.14
iscas85/c499 3 101101101 0.052921 100100101 0.36
iscas85/c5315 3 011011101 0.462587 011011100 1.20
iscas85/c6288 3 100100101 0.383951 101101100 2.86
iscas85/c7552 3 011100100 1.95771 011011011 1.39
iscas85/c880 3 101011100 0.0654231 101011100 0.25
iscas89/s1196 3 011101011 0.081063 011101011 0.48
iscas89/s15850 3 110011011 0.398465 000011101 55.53
iscas89/s5378 3 CNS 0.398465 010000011 11.03
iscas89/s641 3 111000011 0.040502 000000010 4.71
iscas89/s713 3 101100101 0.040502 000000101 4.22
iscas89/s832 3 010010010 0.342658 010010011 1.53s

Table 5: Attack Results on Benchmarks with Dynamic Key
Sizes Scalable to the Input Sizes

Benchmark Key Size NEOS Time (S) RANE Time (S)
iscas85/c1355 40 0.104842 3.08
iscas85/c17 2 0.0322511 0.05
iscas85/c1908 30 0.12339 0.47
iscas85/c3540 50 0.149944 0.52
iscas85/c432 30 0.164 0.14
iscas85/c499 40 0.151909 0.45
iscas85/c5315 170 2.14995 3.46
iscas85/c6288 30 0.894312 2.77
iscas85/c7552 200 1.90459 1.32
iscas85/c880 60 0.123312 0.22
EPFL/adder 60 0.18 FAIL
EPFL/bar 50 0.69 FAIL
EPFL/div 50 461.62 FAIL
EPFL/hyp 60 688.26 FAIL
EPFL/log2 20 25.73 FAIL
EPFL/max 80 1.46 FAIL

EPFL/multiplier 50 550.99 FAIL
EPFL/sin 20 2.19 FAIL
EPFL/sqrt 50 7.88 FAIL

EPFL/adder_depth_2023 60 0.9180 FAIL
EPFL/arbiter_depth_2022 60 0.9101 FAIL
EPFL/bar_depth_2015 50 12.12 FAIL
EPFL/cavlc_depth_2022 10 0.2943 FAIL
EPFL/div_depth_2023 50 152.8 FAIL
EPFL/adder_size_2022 60 1.224 FAIL
EPFL/arbiter_size_2023 60 0.2725 FAIL
EPFL/bar_size_2015 50 0.2725 FAIL
EPFL/cavlc_size_2023 50 0.63578 FAIL
EPFL/div_size_2023 50 83.98 FAIL

In the tables, different colors are used to indicate specific condi-
tions. The color light red1 represents the “Condition Not Solvable”
status. A deeper red2 signifies a wrong key, while the darkest red3
indicates that the attack failed. Finally, green4 denotes that the
correct key has been found.
1 CNS, 2 x..x, 3 FAIL, 4 Equal

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Kevin Lopez and Amin Rezaei

(a) Power (W) (b) Number of Cells

(c) Area (𝜇𝑚2) (d) Number of IOs

Figure 2: Overhead Measurements

This experiment shows that SAT-based attacks are not able to
find the sequences of the keys but only to find the first one. The
key found by the SAT solvers is a combination of the keys for the
locked gates, as we see in the first test for Table 4, the key value
100 is repeated three times, which is only one of the combinations
of the keys that are used to lock the gates.

4.2.2 Dynamic Key based on Input Size. For the second security
experiment shown in Table 5, we explore scaling key sizes to input
sizes. Specifically, for ISCAS 85 benchmarks, the gate key size is
calculated using

⌊
𝑛
10
⌋
with 10 gates locked, resulting in a floor value

of 10 compared to the input size. In addition, we use a logarithmic
scaling formula to deal with the high number of inputs in the EPFL
benchmarks. While the EPFL benchmarks [45] are in .blif format,
we use the ABC tool [48] to convert them to .bench files and perform
the attack. The key values are generated randomly within the range
dictated by the key input size for both benchmark suites. To simplify
the testing process, we limit the number of gates locked to 10. This
aims to approximate the size of the key as closely as possible to the
input size. The experimental results highlight the challenges faced
by SAT-based attacks in thwarting dynamic key locking.

4.3 Overhead Analysis
Now, we analyze the overhead of K-Gate Lock. The experimental
setup utilizes Cadence Genus, using low mapping and optimization
effort. Circuit locking is executed using .bench files and these are
converted to Verilog with the ABC tool [48]. Power measurements,
as shown in Figure 2, are performed on various ISCAS 85 [42]
benchmarks with the following locking parameters.

• Test Run 1 : 𝑘 = 2, 𝑔 = 3, 𝑘𝑒𝑦 𝑏𝑖𝑡 = 𝑛
3

• Test Run 2 : 𝑘 = 3, 𝑔 = 10, 𝑘𝑒𝑦 𝑏𝑖𝑡 = 5
• Test Run 3 : 𝑘 = 4, 𝑔 = 10, 𝑘𝑒𝑦 𝑏𝑖𝑡 = 5
• Test Run 4 : 𝑘 = 6, 𝑔 = 𝑎𝑙𝑙 , 𝑘𝑒𝑦 𝑏𝑖𝑡 = 1

Table 6: Average Overhead

Test Name Power % Cells % Area % I/O %

K=2, g=3, key bit=n/3 0.45 20.40 18.63 64.84
K=3, g=10, key bit=5 bits 2.93 23.07 19.52 33.14
K=4, g=10, key bit=5 bits 10.45 41.33 33.95 33.14
K=6, g=All, key bit=1 bit 25.62 246.33 197.89 35.23

As shown in Figure 2, power consumption does not increase
much, and the area increases only slightly, correlated with the num-
ber of inputs and the gates locked. The missing data in the area, I/O
measurements, along with power and temperature, means that the
circuit is unable to lock any gates given the specific specifications,
leading to the failure of the locked circuit creation. We calculated
the average percentage increase using the sum of the whole test
run and compared it with the original sum. These values are shown
in Table 6. The highest jump in terms of power is 25.62% in Test
Run 4, while the smallest jump is less than 1% in Test Run 1.

5 CONCLUSION
In this paper, we proposed a novel multi-key logic locking solution
called K-Gate Lock that is based on input encoding and can be
fully implemented using combinational logic without the need for
state-holder components. Experimental results showed thatK-Gate
Lock is resilient against state-of-the-art SAT-based oracle-guided
attacks with minimal overhead. This offers the potential of multi-
key logic locking schemes for robust hardware IP protection with
reasonable overhead.

ACKNOWLEDGMENT
This material is based upon work supported by the National Science
Foundation under Award No. 2245247.

K-Gate Lock: Multi-Key Logic Locking Using Input Encoding Against Oracle-Guided Attacks ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

REFERENCES
[1] Jarrod A. Roy, Farinaz Koushanfar, and Igor L. Markov. Ending piracy of inte-

grated circuits. Computer, 43(10):30–38, 2010.
[2] Jeyavijayan Rajendran, Huan Zhang, Chi Zhang, Garrett S. Rose, Youngok Pino,

Ozgur Sinanoglu, and Ramesh Karri. Fault analysis-based logic encryption. IEEE
Transactions on Computers, 64(2):410–424, 2015.

[3] Pramod Subramanyan, Sayak Ray, and Sharad Malik. Evaluating the security
of logic encryption algorithms. In IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 137–143, 2015.

[4] Yang Xie and Ankur Srivastava. Anti-sat: Mitigating sat attack on logic locking.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
38(2):199–207, 2019.

[5] Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan Rajendran, and Ozgur
Sinanoglu. Sarlock: Sat attack resistant logic locking. In IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages 236–241,
2016.

[6] Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan J V Rajendran, and Ozgur
Sinanoglu. Ttlock: Tenacious and traceless logic locking. In IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages 166–166, 2017.

[7] Bicky Shakya, Xiaolin Xu, Mark Tehranipoor, and Domenic Forte. Cas-lock: A
security-corruptibility trade-off resilient logic locking scheme. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2020(1):175–202, 2020.

[8] Amin Rezaei, Yuanqi Shen, and Hai Zhou. Rescuing logic encryption in post-sat
era by locking & obfuscation. In Design Automation & Test in Europe Conference
& Exhibition (DATE), pages 13–18, 2020.

[9] Raheel Afsharmazayejani, Hossein Sayadi, and Amin Rezaei. Distributed logic
encryption: Essential security requirements and low-overhead implementation.
In Proceedings of Great Lakes Symposium on VLSI (GLSVLSI), pages 127–131, 2022.

[10] Hadi Mardani Kamali, Kimia Zamiri Azar, Houman Homayoun, and Avesta Sasan.
Full-lock: Hard distributions of sat instances for obfuscating circuits using fully
configurable logic and routing blocks. In Proceedings of Design Automation
Conference (DAC), pages 1–6, 2019.

[11] Kaveh Shamsi, Meng Li, David Z. Pan, and Yier Jin. Cross-lock: Dense layout-level
interconnect locking using cross-bar architectures. In Proceedings of the Great
Lakes Symposium on VLSI (GLSVLSI), pages 147–152, 2018.

[12] Md RafidMuttaki, RoshanakMohammadivojdan, Mark Tehranipoor, and Farimah
Farahmandi. Hlock: Locking ips at the high-level language. In Design Automation
Conference (DAC), pages 79–84, 2021.

[13] Michael Zuzak, Yuntao Liu, and Ankur Srivastava. Trace logic locking: Improving
the parametric space of logic locking. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 40(8):1531–1544, 2021.

[14] Yuke Zhang, Yinghua Hu, Pierluigi Nuzzo, and Peter A. Beerel. Trilock: Ic
protection with tunable corruptibility and resilience to sat and removal attacks.
In 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1329–1334, 2022.

[15] Amin Rezaei, Ava Hedayatipour, Hossein Sayadi, Mehrdad Aliasgari, and Hai
Zhou. Global attack and remedy on ic-specific logic encryption. In IEEE In-
ternational Symposium on Hardware Oriented Security and Trust (HOST), pages
145–148, 2022.

[16] Amin Rezaei, Jie Gu, and Hai Zhou. Hybrid memristor-cmos obfuscation against
untrusted foundries. In IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pages 535–540, 2019.

[17] Amin Rezaei and Hai Zhou. Sequential logic encryption against model checking
attack. In Design Automation & Test in Europe Conference & Exhibition (DATE),
pages 1178–1181, 2021.

[18] Yeganeh Aghamohammadi and Amin Rezaei. Cola: Convolutional neural net-
work model for secure low overhead logic locking assignment. In Great Lakes
Symposium on VLSI 2023 (GLSVLSI), pages 339–344, 2023.

[19] Amin Rezaei, You Li, Yuanqi Shen, Shuyu Kong, and Hai Zhou. Cycsat-
unresolvable cyclic logic encryption using unreachable states. In Proceedings
of the 24th Asia and South Pacific Design Automation Conference, page 358–363,
2019.

[20] Amin Rezaei, Yuanqi Shen, Shuyu Kong, Jie Gu, and Hai Zhou. Cyclic locking
and memristor-based obfuscation against cycsat and inside foundry attacks. In
2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
85–90, 2018.

[21] Pei-Pei Chen, Xiang-Min Yang, Yu-Cheng He, Yung-Chih Chen, Yi-Ting Li, and
Chun-Yao Wang. Looplock 3.0: A robust cyclic logic locking approach. In 2024
29th Asia and South Pacific Design Automation Conference (ASP-DAC), pages
594–599, 2024.

[22] Michaela Brunner, Tarik Ibrahimpasic, Bing Li, Grace Li Zhang, Ulf Schlichtmann,
and Georg Sigl. Timing camouflage enabled state machine obfuscation. In 2022
IEEE Physical Assurance and Inspection of Electronics (PAINE), pages 1–7, 2022.

[23] Seetal Potluri, Aydin Aysu, and Akash Kumar. Seql: Secure scan-locking for ip
protection. In 2020 21st International Symposium on Quality Electronic Design
(ISQED), pages 7–13, 2020.

[24] Ujjwal Guin, Ziqi Zhou, and Adit Singh. Robust design-for-security architecture
for enabling trust in ic manufacturing and test. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 26(5):818–830, 2018.

[25] Xiang-Min Yang, Pei-Pei Chen, Hsiao-Yu Chiang, Chia-Chun Lin, Yung-Chih
Chen, and Chun-Yao Wang. Looplock 2.0: An enhanced cyclic logic locking
approach. IEEE Transactions on CAD of Integrated Circuits and Systems, 41(1):29–
34, 2021.

[26] Subhajit Dutta Chowdhury, Gengyu Zhang, Yinghua Hu, and Pierluigi Nuzzo.
Enhancing sat-attack resiliency and cost-effectiveness of reconfigurable-logic-
based circuit obfuscation. In 2021 IEEE International Symposium on Circuits and
Systems (ISCAS), pages 1–5, 2021.

[27] Rajit Karmakar, Harshit Kumar, and Santanu Chattopadhyay. Efficient key-gate
placement and dynamic scan obfuscation towards robust logic encryption. IEEE
Transactions on Emerging Topics in Computing, 9(4):2109–2124, 2019.

[28] You Li, Guannan Zhao, Yunqi He, and Hai Zhou. Obfuslock: An efficient obfus-
cated locking framework for circuit ip protection†. In 2023 Design, Automation
& Test in Europe Conference & Exhibition, pages 1–6, 2023.

[29] Hai Zhou, Amin Rezaei, and Yuanqi Shen. Resolving the trilemma in logic
encryption. In International Conference on Computer Aided Design (ICCAD),
pages 1–8, 2019.

[30] Zhaokun Han, Aneesh Dixit, Satwik Patnaik, and Jeyavijayan Rajendran. Station:
State encoding-based attack-resilient sequential obfuscation. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, pages 1–1, 2024.

[31] Yeganeh Aghamohammadi and Amin Rezaei. Machine learning-based security
evaluation and overhead analysis of logic locking. Journal of Hardware and
Systems Security, 8:25–43, 2024.

[32] Amin Rezaei, Raheel Afsharmazayejani, and Jordan Maynard. Evaluating the se-
curity of efpga-based redaction algorithms. In IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 1–7, 2022.

[33] Yuanqi Shen, You Li, Shuyu Kong, Amin Rezaei, and Hai Zhou. Sigattack: New
high-level sat-based attack on logic encryptions. In 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 940–943, 2019.

[34] Yuanqi Shen, Amin Rezaei, and Hai Zhou. Sat-based bit-flipping attack on logic
encryptions. In 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 629–632, 2018.

[35] Yinghua Hu, Yuke Zhang, Kaixin Yang, Dake Chen, Peter A. Beerel, and Pierluigi
Nuzzo. Fun-sat: Functional corruptibility-guided sat-based attack on sequential
logic encryption. In 2021 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pages 281–291, 2021.

[36] Yuanqi Shen and Hai Zhou. Double dip: re-evaluating security of logic encryption
algorithms. In Great Lakes Symposium on VLSI (GLSVLSI), pages 179–184, 2017.

[37] Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z. Pan, and Yier
Jin. App-sat: approximately deobfuscating integrated circuits. In International
Symposium on Hardware Oriented Security and Trust (HOST), pages 95–100, 2017.

[38] Nimisha Limaye, Satwik Patnaik, and Ozgur Sinanoglu. Fa-sat: Fault-aided sat-
based attack on compound logic locking techniques. In Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 1166–1171, 2021.

[39] Jordan Maynard and Amin Rezaei. Dk lock: Dual key logic locking against
oracle-guided attacks. In 2023 24th International Symposium on Quality Electronic
Design (ISQED), pages 1–7, 2023.

[40] Yasaswy Kasarabada, Vaishali Muralidharan, and Ranga Vemuri. Sled: Sequential
logic encryption using dynamic keys. In 2020 IEEE 63rd International Midwest
Symposium on Circuits and Systems (MWSCAS), pages 844–847, 2020.

[41] Vijaypal Singh Rathor, Munesh Singh, Kshira Sagar Sahoo, and Saraju P. Mohanty.
Gatelock: Input-dependent key-based locked gates for sat resistant logic locking.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 32(2):361–372,
2024.

[42] Mark C. Hansen, Hakan Yalcin, and John P. Hayes. Unveiling the iscas-85
benchmarks: a case study in reverse engineering. IEEE Design & Test of Computers,
16(3):72–80, 1999.

[43] Chris Drake. PyEDA: Python electronic design automation. https://github.com/
cjdrake/pyeda, 2023.

[44] Kaveh Shamsi. Attack tool and benchmarks. https://bitbucket.org/kavehshm/
neos, 2019.

[45] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. The epfl
combinational benchmark suite. Integrated Systems Laboratory (LSI), EPFL,
Switzerland, 2015.

[46] Franc Brglez, David Bryan, and Krzysztof Kozminski. Combinational profiles of
sequential benchmark circuits. In 1989 IEEE International Symposium on Circuits
and Systems (ISCAS), volume 3, pages 1929–1934, 1989.

[47] Shervin Roshanisefat, Hadi Mardani Kamali, Houman Homayoun, and Avesta
Sasan. Rane: An open-source formal de-obfuscation attack for reverse engineering
of logic encrypted circuits. Great Lakes Symposium on VLSI, 2021.

[48] Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential
Synthesis and Verification. http://www.eecs.berkeley.edu/~alanmi/abc.

https://github.com/cjdrake/pyeda
https://github.com/cjdrake/pyeda
https://bitbucket.org/kavehshm/neos
https://bitbucket.org/kavehshm/neos
http://www.eecs.berkeley.edu/~alanmi/abc

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Logic Locking Techniques
	2.2 Oracle-Guided Attacks
	2.3 Multi-Key Approaches

	3 Multi-Key Logic Locking
	3.1 Terminology
	3.2 Locking the Whole Circuit
	3.3 K-Gate Lock Algorithm
	3.4 Time Complexity
	3.5 Attack Analysis

	4 Experimental Results
	4.1 Algorithm Validation
	4.2 Security Evaluation
	4.3 Overhead Analysis

	5 Conclusion
	References

