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Abstract—With the ever-increasing integration of artificial
intelligence into daily life and the growing importance of well-
trained models, the security of hardware accelerators supporting
Deep Neural Networks (DNNs) has become paramount. As a
promising solution to prevent hardware intellectual property
theft, eFPGA redaction has emerged. This technique selectively
conceals critical components of the design, allowing authorized
users to restore functionality post-fabrication by inserting the
correct bitstream. In this paper, we explore the redaction of
DNN accelerators using eFPGAs, from specification to physical
design implementation. Specifically, we investigate the selection
of critical DNN modules for redaction using both regular
and fracturable look-up tables. We perform synthesis, timing
verification, and place & route on redacted DNN accelerators.
Furthermore, we evaluate the overhead of incorporating eFPGAs
into DNN accelerators in terms of power, area, and delay, finding
it reasonable given the security benefits.

Index Terms—Hardware Security; Deep Neural Networks;
Hardware Accelerators; eFPGA Redaction; Physical Design

I. INTRODUCTION

Deep Neural Network (DNN) technologies continue to
evolve, propelled by the quest for enhanced accuracy. Achiev-
ing superior accuracy in DNNs necessitates high-performance
computing resources, such as hardware accelerators. As ac-
curacy and throughput become increasingly critical, the im-
portance of security for DNN models and accelerators also
escalates.

Attackers have the capability to reverse engineer the In-
tellectual Property (IP) of hardware accelerators, enabling
them to create unauthorized substitute models. Additionally,
they can tamper with the weights of the DNN, resulting in
alterations to accuracy and misclassification of inputs [1].
To address these security concerns, logic locking [2]–[7] has
emerged using various types of key gates in which only
authorized users can unlock the circuit. However, logic locking
faces challenges from SAT-based attacks [8]–[13] that exploit
an activated Integrated Circuit (IC) as a reference point along
with the leaked locked netlist, allowing them to extract the
correct key. In response to these threats, programmable fabrics
exemplified by embedded Field-Programmable Gate Arrays
(eFPGAs) offer robust defenses against reverse engineering
and hardware IP theft [14]–[17]. The configuration bitstream
remains accessible solely to the designer or authorized user,
even if an untrusted foundry manufactures the design. The
challenges in eFPGA redaction encompass identifying which
modules within the IP should be redacted and minimizing

the delay and area overheads associated with replacing these
specific modules with eFPGAs.

To the best of our knowledge, there is a gap in the existing
literature on how eFPGA redaction affects the security of
DNN accelerators. Specifically, there is limited exploration
of the implications on timing, area, and power overheads
when integrating eFPGA to replace a segment of a hardware
accelerator. The contributions of this paper are as follows:
• Proposing an eFPGA redaction flow to hide sensitive

components of a DNN accelerator with low overhead;
• Providing guidance on selecting a critical module to be

replaced with regular or fracturable LUTs;
• Evaluating the overhead of the proposed redaction

method in terms of area, power, and delay as well as
the security against oracle-guided SAT-based attacks.

The rest of the paper is organized as follows: Section II
discusses the background, preliminaries, and related works.
Section III proposes our contributions to redact critical IPs
of a DNN accelerator via eFPGAs, followed by verification,
synthesis, and place & route steps. Section IV depicts the com-
prehensive experimental results on the overhead and security
of the redacted accelerator. Finally, conclusions are given in
Section V.

II. BACKGROUND AND PRELIMINARIES

In this section, we discuss the background on DNNs,
accelerators, eFPGAs, and existing work on securing hardware
accelerators.

A. Deep Neural Networks

DNNs are employed in various tasks such as image clas-
sification [18] and speech recognition [19]. The input layer
of DNNs receives inputs, and outputs are generated through
weighted sums followed by non-linear activation functions.
These outputs then proceed to subsequent layers. Initially set
randomly, weights and biases are adjusted during the training
phase to minimize disparities between expected and actual
outputs.

A Convolutional Neural Network (CNN) is a type of DNN
comprising four main layers: convolutional, normalization,
pooling, and fully connected layers. In the convolutional
layer, inputs and outputs are processed as 2D or 3D arrays,
with dimensions represented by height, width, and number of
channels. The convolutional layer uses 3D filters to calculate
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Fig. 1: eFPGA architecture

the inner product with sub-arrays of the input, moving a
sliding window of the filter size across the input with a fixed
stride. Normalization layers adjust activation levels within
each feature map, aiding in stabilizing the learning process
by keeping inputs within a reasonable range. Pooling layers
in CNNs down-sample input feature maps to create lower-
resolution versions, retaining essential information while ex-
cluding irrelevant details. Operations such as average pooling
and max pooling are applied independently to each feature
map, reducing dimensions while maintaining the number of
channels. Fully connected layers in CNNs determine class
scores by processing outputs from preceding layers. Activation
functions like Rectified Linear Unit (ReLU) introduce non-
linearity.

B. Hardware Accelerators

DNN models demand substantial computational resources,
with tasks such as image classification requiring millions of
weights and over half a billion Multiply And Accumulate
(MAC) operations, necessitating specialized accelerators for
real-time execution. DNN architectures require Arithmetic
Logical Units (ALUs) [20], [21] that focus on MAC units for
computational resources and flexibility, dataflow optimization
[22], [23] to minimize energy consumption, and sparsity [24]
to skip zero multiplications and reduce power consumption.

Eyeriss [25] is a Row-Stationary (RS) dataflow-based accel-
erator designed to minimize data movement energy in spatial
architectures. In the RS dataflow, a row of operands is stored in
the Register File (RF). Eyeriss employs diagonal connections
of Processing Elements (PEs) for input reuse and vertical
accumulation of partial sums. Each PE includes local registers
for storing at least one row of weights and activations, along
with a MAC unit and controller responsible for the temporal
reuse of MAC units in 1D convolution. A significant portion
of the RF is allocated to weights, and input vectors are reused
to calculate partial sums for multiple output feature maps.

C. Embedded Field Programmable Gate Arrays

Modern eFPGA architectures adopt a tile-based structure,
with each tile containing configurable logic resources. Sur-
rounding these tiles are the I/O blocks, which facilitate
communication between the eFPGA and external devices or

systems. Each tile within the eFPGA architecture comprises
two fundamental elements that collectively enable its pro-
grammability and functionality. The first component is the
Configurable Logic Block (CLB), which serves as the pri-
mary unit for implementing logic functions and user-defined
designs. The second component is programmable routing,
which facilitates the interconnection of various CLBs and
enables the flow of data between them. Within each CLB,
there is a Basic Logic Element (BLE) that incorporates a K-
input Look-Up Table (LUT) capable of mapping a K-input
single-output Boolean function, alongside a flip-flop and a 2-
1 routing multiplexer used to toggle between sequential and
combinational logic.

Fig. 1 provides an example of a 4x4 eFPGA architecture,
the components inside each tile, and a visual representation of
a basic BLE setup with a 4-input LUT. Studies have identified
the optimal LUT size for balancing area and delay to be
between 4 to 6, with 6-LUTs exhibiting superior performance
and 4-LUTs occupying the smallest area [26]. To address
these trade-offs and enhance LUT utilization, a refined version
known as fracturable LUTs (FLUTs) has been introduced.
FLUTs have more than one mode of operation: they can
function as a K-input LUT or be fractured into smaller K-1
LUTs, with shared inputs [27]. Within the CLB, BLEs can
be organized into logic clusters to optimize eFPGA speed
and area efficiency. The ideal cluster size (N ) is typically
determined to be between 4 and 10 [28]. Crossbar routing
interconnects the inputs and outputs of CLBs and BLEs using
a series of programmable multiplexers, ensuring connectivity
between all BLEs and every CLB pin. Switch Blocks (SBs)
and Connection Blocks (CBs) serve as the global routing that
connects CLBs together.

D. Related Works

With the recent boom in Artificial Intelligence (AI), de-
veloping new approaches to safeguard the DNN models and
accelerators is of the utmost importance. In [29], fault injection
attacks are examined that are capable of inducing misclassifi-
cation in DNN by altering the bias in the output layer to favor
the desired adversarial class. As a countermeasure in [30] the
fault-sensitivity of individual neurons within a given DNN is



measured by effectively leveraging both external and internal
redundancy within DNN models to balance system robustness
against hardware overhead.

In addition, a Hardware Protected Neural Network (HPNN)
framework is proposed [31] to safeguard DNNs from attack-
ers with extensive knowledge. It conceals the weight space
through a confidential HPNN key, controlling each neuron’s
functionality. In [32] a hardware key is introduced to secure
the accelerator such that a wrong key increases memory
access, inference time, and energy consumption, making it
unsuitable for inference. This method requires modifying the
activation function to prevent bypassing the hardware key
controlled block. Moreover, they use a model key to obscure
the model without the need of retraining the model. Although
this approach resulted in decreased accuracy and higher mem-
ory access when incorrect keys were applied, it necessitates
modifications in the DNN accelerator.

Initial logic locking solutions utilize XOR-based and MUX-
based mechanisms [33], [34]. However, the oracle-guided SAT
attack [8] exposes vulnerabilities in these methods, prompting
the development of more robust techniques [3], [5], [6], [35]–
[40], which increase the time complexity of SAT attacks.

Furthermore, a soft embedded FPGA redaction method is
introduced [17] to hide critical IP functionality and routing
within RTL designs. A critical IP in the Verilog file is
identified and synthesized using Yosys [41], then place &
route is performed to determine the smallest eFPGA fabric
needed. The resulting fabric, devoid of critical IP information,
is loaded with a bitstream to maintain functionality. In [42] the
effects of varying parameters (K and N ) on area, power, delay,
and security of eFPGA architectures are compared. Increasing
K influences CLB inputs, impacting LUT sizes and routing,
while increasing N adds BLEs, affecting area and routing
complexities. Findings challenge the assumption that fabric
size directly correlates with security strength.

In [11], the assumption that eFPGA-based designs are inher-
ently secure against oracle-guided attacks has been challenged.
The researchers conducted two attacks: CycSAT [9], which
aims to break cycles within the circuit, and IcySAT [10].
IcySAT took longer due to the unrolling process. However,
CycSAT struggles to break hard loops, leaving at least one
loop intact and causing the SAT solver to repeat iterations.
To address this, the paper developed a two-phase attack called
Break & Unroll. The first phase breaks cycles sequentially,
creating a new non-cyclic constraint. If hard cycles persist, the
second phase unrolls the circuit, duplicating gates and breaking
feedback connections to prevent infinite loops.

III. REDACTOR

In this section, we propose REDACTOR, an eFPGA
REDaction framework for CNN ACceleraTORs shown in
Fig. 2. Without loss of generality, we utilize the accelerator
outlined in [43], which is a modification of the Broadcast,
Stay, Migration (BSM) dataflow initially proposed in [44]. Al-
though the procedure is independent of the chosen accelerator,

TABLE I: Critical IPs redacted

Critical # of # of Description

IP Modules I/Os

OWMC 5 20 Controls the flow of DNN weights

MUXDC 4 15 Controls dataflow between PEs

OMDC 20 26 Controls the convolution process

PEDC 1 5 Sets/resets output register of PEs

this adaptation is considered energy-efficient as it effectively
minimizes redundant access to off-chip memory.

A. Critical IP Selection and Fabric Generation

The goal of module selection is to choose a module that
plays a crucial role in the overall functionality of the acceler-
ator. In this regard, three options can be considered:

• Opting for a module that significantly impacts the outputs
proves beneficial for causing output corruption when an
unauthorized user loads the wrong bitstream.

• Selecting a module that causes error propagation through-
out the system can amplify the impact of using incorrect
bitstreams and decrease the accuracy of the DNN model.

• Choosing a module that can be implemented using a
complex fabric with a large unroll factor can be beneficial
for securing against existing attacks that target eFPGAs
while ensuring it remains within the power, area, and
delay budget.

The first critical IP selected is the On-Chip Weight Memory
Controller (OWMC), which has 12 outputs, some of which
directly and indirectly impact the loading of DNN weights
from the weight memory to the data flow block comprising
numerous Processing Elements (PEs). Protecting these weights
ensures that sensitive information remains secure from unau-
thorized access or corruption. Subsequently, we iterate through
the redaction process to redact several IPs in the accelera-
tor using eFPGAs of varying sizes and architectures. These
IPs include the Multiplexers Dataflow Controller (MUXDC),
the On-Chip Memory Dataflow Controller (OMDC), and the
Processing Elements Dataflow Controller (PEDC). Table I
displays the characteristics of each critical IP.

To generate the eFPGA fabrics, we use OpenFPGA [45].
We input three files into OpenFPGA: the benchmark file,
which contains the critical RTL Verilog portion of the selected
module for redaction, and two architecture files. One is the
OpenFPGA architecture file [46], and the other is the VPR
architecture file [47]. Both files are in Extensible Markup
Language (XML) format and together specify the architecture
of the eFPGA.

We select a fabric architecture to achieve 100% block
utilization and over 90% I/O utilization. This is accomplished
by manually adjusting the number of BLEs (N ) per CLB
and the number of I/O pins per tile until the target utilization
is reached, while maintaining a constant 4-input LUT/FLUT
(K=4). The number of CLB inputs can be determined using



Fig. 2: The proposed eFPGA redaction flow for DNN accelerators

the following formula, known to provide favorable Power,
Performance, and Area (PPA) characteristics [48].

I =
K(N + 1)

2
(1)

Next, we acquire the timing constraints (i.e., SDC files)
for the fabric intended for use in the physical design phase.
Additionally, we obtain the Verilog files for the fabric, along
with a testbench designed to verify the functionality of the
fabric and the bitstream necessary to program the fabric to

operate as the chosen module for redaction. Table II presents
the eFPGA parameters used.

B. Verification

We utilize ModelSim to simulate the functionality of the
fabric. Both the original design and the eFPGA fabric receive
shared input stimuli, and the correct bitstream is loaded into
the fabric for evaluation. Subsequently, the output vectors of
the eFPGA and the original design are compared. When the
correct bitstream is applied, the output vectors should match,
ensuring consistency and functionality between the eFPGA



TABLE II: eFPGA parameters used

Parameter Value Description

K 4 Input size of a LUT/FLUT

N [1,9] Number of BLEs per CLB

W Auto Number of routing tracks in a channel

Fcin 0.15 Fraction of the routing tracks that a CLB input
can connect

Fcout 0.1 Fraction of the routing tracks that a CLB output
can connect

Fs 3 Number of connections per incoming routing
track in a switch block

L 4 The length of routing track (number of CLBs
spanned)

and the original design. In Fig. 3, the waveforms depict the
output vectors. The eFPGA output signals are visualized in
green, while the original module’s signals are represented in
yellow. The verification process is repeated for the synthesized
fabric to verify functionality after synthesis.

C. eFPGA Integration and Synthesis

We utilize Cadence Genus for synthesizing each redacted
module. The redacted module serves as the top module in
Cadence Genus for synthesis, where we replace the critical
Verilog portion with the eFPGA at the RTL level. To map
the Verilog netlist to a gate-level netlist, we employ the
standard cell library file available on the Cadence website (i.e.,
slow vdd1v2 basicCells.lib), which is a 45nm technology
library characterized by slower operating speeds or slower
process corners.

First, we read the Verilog and library files and elaborate the
top module. Then, we analyze all the SDC files generated
by OpenFPGA and command Genus to report timing. At
this stage, Genus addresses any combinational loops that
legally exist within the eFPGA fabric by inserting a buffer
from the technology library onto the feedback loop (i.e.,
cdn loop breaker cell). Additionally, it disables the timing arc
from the input to the output, effectively breaking the timing
loop. Fig. 4 shows an example of a loop that is broken. The
buffer highlighted in yellow represents the feedback loop.

We choose to use a flattened netlist to simplify the place
and route stage. However, during the process of flattening the

Fig. 3: eFPGA fabric and original module output vectors

Fig. 4: Loop breaker cell example

netlists, Cadence Genus modifies the names of hierarchical
instances, which results in the disregard of some initial SDC
constraints. To address this issue, we instruct Genus to parse
an additional SDC file, which contains instructions to disable
timing for specific paths using the flattened names.

Finally, optimization is performed on the flattened netlist,
where we instruct the tool to attempt optimization on all paths
with negative slack, including the critical path. Reports are
then generated to provide details on area, power, and timing.
Additionally, the gate-level netlist Verilog file and a single
SDC file containing all constraints are generated. These two
files serve as inputs for the subsequent place & route stage.
Genus does not incorporate the constraints necessary to break
the timing loops in the final SDC file. Therefore, we manually
modify the file to include these constraints.

D. Place & Route

The place & route stage in IC design is a critical process
where logic gates, flip-flops, and other components undergo
positioning (i.e., placement) and interconnection (i.e., routing).
We utilize Cadence Innovus for the place & route of the
redacted modules. Cadence Innovus takes inputs including the
gate-level netlist and the SDC constraint file generated by
Cadence Genus, along with technology files such as timing
library files (.lib) and library exchange format (.lef) files.

Fig. 5: Redacted module layout without metal layers



TABLE III: eFPGA fabric characteristics

eFPGA Block I/O Bitstream Channel

Fabric Utilization utilization Size Width

2x2 K4N2 100% 94% 614 18

2x2 K4 frac N1 100% 94% 458 18

1x1 K4N6 100% 100% 440 26

1x1 K4 frac N3 100% 100% 256 18

2x2 K4N4 100% 95% 1160 30

2x2 K4 frac N3 100% 95% 1059 30

1x1 K4N1 100% 100% 66 6

1x1 K4 frac N1 100% 100% 79 14

The process begins with specifying the floor plan, followed
by power planning, which involves inserting VDD and VSS
rings, and power and ground stripes to connect them to
standard cells. Standard cells are then placed within the
specified floor plan. Additionally, we instruct Innovus to place
the design with I/O pins, eliminating the need for manual I/O
file creation. Subsequently, pre-Clock Tree Synthesis (CTS)
optimization is performed to meet all timing constraints before
CTS. We then perform CTS, followed by post-CTS optimiza-
tion to further refine the design to meet timing constraints.
Finally, routing and post-route optimization are carried out to
complete the process, and timing, area, and power reports are
generated. Fig. 5 shows the layout of the redacted module
without metal layers. The eFPGA is noticeable in the middle,
where it exhibits a slightly different pattern.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the overhead and security
of REDACTOR. The source codes, along with the created
eFPGA fabrics, are available on our GitHub repository1.

A. Overhead Analysis

As mentioned earlier, our goal is to find the simplest fabric
using the parameters shown in Table II. We achieve this by
increasing or decreasing the number of BLEs in each CLB
and I/O pins in I/O tiles. The characteristics of the eFPGA
fabrics utilized in the experiments are summarized in Table
III. Fig. 6 compares the area, power, and delay overheads of
LUT-based eFPGA and FLUT-based eFPGA for the redacted
modules normalized according to the original designs.

OWMC: We redact the OWMC IP using two fabrics: The
first one is a LUT-based fabric with 2 BLEs/CLB (2x2 K4N2).
The second one is a FLUT-based fabric with 1 BLE/CLB (2x2
K4 frac N1). Despite the expected larger bitstream for the
FLUT-based fabric, it actually has a smaller size because of
fewer BLEs/CLB. Both fabrics fully utilize blocks and I/O
but have different bitstream sizes: 614 for the LUT-based
and 458 for the FLUT-based. Despite FLUT’s anticipated
impact on channel width, it remains the same at 18 for both
fabrics due to fewer BLEs. The LUT-based fabric introduces

1https://github.com/cars-lab-repo/REDACTOR

higher area, power, and delay overheads (33%, 16%, and 27%
respectively) compared to the FLUT-based fabric (30%, 15%,
and 24.5% respectively). Opting for FLUT-based is preferable
when integrating eFPGA for the OWMC IP.

MUXDC: We test the MUXDC IP using two fabric con-
figurations: a LUT-based with 6 BLEs/CLB (1x1 K4N6)
and a FLUT-based with 3 BLEs/CLB using FLUT (1x1
K4 frac N3). Both fabrics achieve full block and I/O uti-
lization. The LUT-based has a larger bitstream size of 440
compared to the FLUT-based, which has 256 bits. Routing
widths differ, with the LUT-based at 26 and the FLUT-based
at 18 tracks per channel. Due to this variance, the area
difference between the fabrics is notable. The FLUT-based
shows significant improvement in power consumption and a
slightly better critical path delay. The first fabric introduces
higher area, power, and delay overheads (192%, 139%, and
2% respectively) compared to the second fabric (107%, 49%,
and 1.6% respectively). For the MUXDC IP, opting for FLUT
proves preferable for redaction.

OMDC: In addition, the OMDC IP is tested using two
fabrics: a LUT-based (2x2 K4N4) and a FLUT-based (2x2
K4 frac N3), both achieving full block utilization and 95%
I/O utilization. Despite the LUT-based fabric having a larger
bitstream size of 1160 compared to the second fabric’s 1059,
the fabric utilizing regular LUTs shows slightly better perfor-
mance in area, power, and delay, even though both fabrics
routed with a channel width of 30. The LUT-based introduces
an area overhead of 145%, a power overhead of 105%, and
a critical path delay overhead of 23%, while the FLUT-based
introduces an area overhead of 154%, a power overhead of
114%, and a critical path delay overhead of 23.6%. For the
OMDC IP, choosing a regular LUT is preferable.

PEDC: Finally, the PEDC IP is evaluated with two fabrics:
a basic LUT-based with one CLB and one BLE (1x1 K4N1),
and an identical fabric with FLUT instead (K4 frac N1). Both
fabrics utilize I/Os and resources fully. The LUT-based fabric
needs 66 bits for programming, while the FLUT-based one
requires 79. The LUT-based fabric has a minimum channel
width of 6, while the FLUT-based one needs a wider channel
width of 14 due to its more complex routing. Because the
original PEDC IP is a very small finite state machine, both
the LUT-based and FLUT-based fabrics shows huge area and
power overhead as well as high delay compared with the
original IP. In the case of PEDC IP, choosing the fabric
with regular LUTs is preferable. However, it is not efficient
to replace a small IP with eFPGA due to the overheads
introduced.

B. Security Analysis

We conduct a separate synthesis of the eFPGA fabric, this
time constraining Genus to utilize only basic logic cells. Using
Python, we convert the Verilog gate-level netlist from Genus
to a .bench file. To establish an oracle, we program the
fabric with the bitstream generated by OpenFPGA, assigning
the outputs of the DFFs found in the scan chain with their
corresponding bits. For creating a key-controlled netlist, we



(a) Redacted OWMC (b) Redacted MUXDC (c) Redacted OMDC

Fig. 6: Normalized area, power, and delay overhead of LUT-based vs. FLUT-based eFPGAs redacted modules

TABLE IV: Security results

Fabric Unroll # Clauses Time (s) Key Reported?

2x2 K4N2 59 1610318 99 yes

2x2 K4 frac N1 30 559536 7 yes

1x1 K4N6 36 875500 51 yes

1x1 K4 frac N3 2 9291 0.26 yes

2x2 K4N4 112 N/A Time out no

2x2 K4 frac N3 59 3299375 81 yes

1x1 K4N1 5 4189 0.1 yes

1x1 K4 frac N1 2 2384 0.08 yes

expose the outputs of the DFFs in the scan chain as key
inputs. Then, we utilized the break and unroll attack found
in [11], which is then fed to NEOS [49] tool for extracting
the bitstream.

The security results are presented in Table IV. We were able
to extract the bitstream of all eFPGAs that used FLUTs in a
shorter time compared to eFPGAs that used regular LUTs.
This is because the LUT-based fabrics have a higher unroll
factor. For instance, our 2x2 K4N4 fabric timed out after 6
hours of running the attack, which has an unroll factor of 112.
To maintain the reduced overheads of FLUT-based eFPGA
fabrics, we propose two methods for future research:
• Introducing more cycles within the eFPGA fabric, thereby

increasing the unroll factor to the point where the attack
times out.

• Introducing non-unrollable cycles within the eFPGA fab-
ric, which consist of oscillating and stateful cycles [11]
interlaced in a manner that ensures at least one cycle
remains unbroken during a cyclic attack, causing it to
fail by entering an infinite loop.

V. CONCLUSION

In this paper, we explored the importance of securing DNN
accelerators and proposed an approach for redacting critical
IPs with eFPGAs, from specification to physical design.
Specifically, we focused on evaluating the impact of eFPGA
fabrics with high I/O and block utilization and assessed the
integration of these nearly fully utilized fabrics with regular
LUTs and FLUTs.

While using FLUT-based eFPGAs can complicate routing,
they offer an advantage by reducing the number of BLEs
or CLBs, which generally translates to lower power, delay,
and area overhead. As demonstrated by the experiments, the
choice between LUT or FLUT depends on the specific IP to be
redacted, and no general rule can be established. Additionally,
we observed that FLUT-based eFPGAs have lower unroll
factors, making it easier for attackers to extract the bitstream.
Conversely, when we redacted the OWMC IP with a regular
LUT-based eFPGA, the attack timed out, and we were able to
maintain reasonable overhead while enhancing security.

For future research, systematically increasing the unrolling
factor or adding non-unrollable cycles to eFPGA fabrics can
be pursued to maintain low overhead while improving security.
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