Journal of Hardware and Systems Security
https://doi.org/10.1007/s41635-025-00160-2

®

Check for
updates

Uncertainty-Aware Unimodal and Multimodal Learning for Evolving
Hardware Trojan Detection

Rahul Vishwakarma' - Amin Rezaei'

Received: 26 August 2024 / Accepted: 18 February 2025
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025

Abstract

As the semiconductor industry has shifted to a fabless paradigm, the risk of hardware Trojans being inserted at various stages
of production has also increased. Recently, there has been a growing trend toward the use of machine learning solutions to
effectively detect hardware Trojans with a focus on the accuracy of the model as an evaluation metric. However, in a high-risk
and sensitive domain, we cannot accept even a small misclassification. Additionally, it is unrealistic to expect an ideal model,
especially when Trojans evolve over time. In this paper, we design an uncertainty-aware machine learning solution which also
handles evolving hardware Trojans using our proposed novel conformalized generative adversarial network. We further extend
the proposed method for multimodal deep learning along with uncertainty quantification that also addresses the problem of
missing modalities. The proposed solutions have been validated on both synthetic and real chip-level benchmarks and proven

to pave the way for researchers looking to find informed machine learning solutions to hardware security problems.

Keywords Hardware Trojan - Machine learning - Multimodal deep learning - Uncertainty quantification -

Calibrated explainability - Conformal prediction

1 Introduction

The insertion of Hardware Trojans (HT) involves a deliber-
ate modification by an attacker to the design of a hardware
component, with potential consequences ranging from device
malfunction to the leakage of sensitive information and
even physical damage [1]. With the semiconductor indus-
try adopting a fabless model, the risk of HT insertion at
various manufacturing stages has increased, posing a sub-
stantial security threat to hardware systems. Conventional
HT detection methods, including signature-based approaches
[2], which analyze Integrated Circuit (IC) functionality, lay-
out, and timing, often prove ineffective against HT insertion
attacks, particularly those designed to evolve over time. Con-
sequently, there is a shift towards the adoption of Machine
Learning (ML)-based solutions for amore efficient and effec-
tive approach to HT detection. However, despite adherence
to ML evaluation best practices, there exists the potential for

B<XI Amin Rezaei
amin.rezaei @csulb.edu

Rahul Vishwakarma
rahuldeo.vishwakarma(1 @student.csulb.edu

I California State University, Long Beach, CA, USA

Published online: 26 February 2025

unintended consequences in the context of hardware security
[3].

The majority of existing ML-based solutions lack suffi-
cient information about the dataset, especially in cases where
class distribution differs significantly, and evaluations need
to account for concept drift or the evolution of new incoming
datasets. Addressing these concerns, a comprehensive study
in [4] seeks to ascertain the extent to which ML serves as a
universal solution for the diverse challenges within the hard-
ware security domain [5].

Aknownissue when employing any ML method is the lack
of guarantee that a model claiming a very small misclassifica-
tion rate will maintain the same performance on unseen data.
Concept drift, caused by the attacker’s intelligently modified
version of HT insertion techniques, introduces uncertainty.
A misclassification not only has significant financial and
economic implications but can also be life-threatening in
high-risk, sensitive domains, such as implantable devices.
Consequently, there is a need for additional metrics to
complement existing model evaluation techniques, ensuring
reliable decisions and coverage guarantees for predictions.
Lately, the widespread adoption of a multimodal deep learn-
ing approach in diverse domains, including healthcare, for
classification tasks has been notable. Nevertheless, concerns

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-025-00160-2&domain=pdf

Journal of Hardware and Systems Security

persist regarding the reliability of model inferences due to
challenges like a scarcity of data points and highly imbal-
anced datasets. Additionally, addressing the issue of missing
modalities in multimodal learning presents another hurdle
that needs resolution to enhance the utility of the data for the
model.

In this paper, we propose a method to detect evolving HT's
using uncertainty-aware unimodal and multimodal learning
which leverages the algorithm-agnostic statistical inference
technique of conformal prediction [6] as shown in Fig. 1.
This methodology ensures guaranteed coverage of predic-
tions, particularly when faced with a covariate shift [7]. Our
non-invasive approach serves as an overlay for existing ML
models, deviating from a point prediction that identifies the
presence or absence of a Trojan in a detected circuit. Instead,
it provides a set prediction of detected labels, accurately
incorporating the correct class 95% of the time on aver-
age (i.e., @ = 0.05). The primary objective of this paper is
to facilitate the integration of ML into the problem-solving
methodologies of hardware security and promote awareness
regarding risk-controlled predictions with assured coverage.

1.1 Motivation

The current scenario in hardware security is characterized by
a concerning increase in the complexity and stealthiness of
HTs, posing an immediate challenge for detection methods.
Upon conducting a thorough examination of the available

literature, we identified a notable gap in research specifically
addressing the detection of evolving HTs.

Furthermore, recent scrutiny of the Trust-Hub repository’s
efficacy in handling HTs raised significant doubts about its
reliability as a suitable benchmark. Specifically, the effec-
tiveness of the Trust-Hub dataset has been questioned [8],
signaling a need for alternative datasets and dispelling the
notion that it serves as an infallible silver bullet for designing
HT detection algorithms suitable for production environ-
ments. In academia, relying on real-world datasets proves
challenging, as corporations often refrain from publicizing
such data due to confidentiality and Intellectual Property (IP)
concerns. To address this limitation, our research endeavors
to bridge the gap by generating synthetic datasets that faith-
fully represent the characteristics of real HTs. This approach
is particularly pertinent in light of industry trends, as pre-
dicted by Gartner, which forecasts that 60% of data used for
Artificial Intelligence (AI) and analytics projects by 2024
will be synthetically generated [9]. The emergent ecosystem
of startups securing substantial funding for synthetic data
generation [10] further attests to the growing importance of
this paradigm.

The motivation behind our research stems from the imper-
ative to address the critical issues of limited input data, the
challenge of handling missing modalities, and the necessity
to provide robust uncertainty estimation for each predic-
tion in the context of evolving HTs. Through our proposed
methodology, we aim to contribute a nuanced understanding

Conformalized
Generator &
Discriminator

(g Code Branchinﬂ [@ RTL to Graph} STON

Euclidian representation

05
025

Uni-modal

Source dataset has

Modal 1
Graph representation ocal2

Multi-modal

labels TF, and Tl

| Labels

| TFg— TF | [TIs— Tl |
i v i

i
H TFs: Trojan Free 1
1 Tl Trojan Infected '
1 TFg: Trojan Free (Synth) |
| Tlg: Trojan Infected (Synth) 1
{ T-EV: Trojan Evolved 1

@® Merge with source

Late Fusion Modal 1 Modal 2

UL UL

v

X Conformal

3000 4360

{76

Wrapper

TF {TFs,TFg}, TI{Tlg}, T-EV {Tlg} i

a=s(f(z).y) Y={yls(@,y) < at |

- [Train][Calibrate][Test] Conformal v ?
Dataset Wrapper ‘
Algorithm agnostic TR v
; ezl Uncertainty
nonconformity score m x -y Quantifier Quantifier f(x1, 22, ..., 201)

__

{TF,T - EV} .
rRTiT-pv) 1 o(HTY) > s CUHT,) 3 elects (R0

Design for each ML Algorithm z(fley : s
h
¢ 1
| EEEEaees
" Guaranteed | | SetPrediction | | RankingHT | i Calibrated !
| coverage | (rrTn, | sup{l — ¢ [T.(@)| < 1): | Explanation '
; : | i |
§ 1 (] 1 p

|
1
: Classification =)
1

Trojan Free Trojan Infected

*

Unimodal Approach

Multimodal Approach

Fig.1 Proposed solution overview for uncertainty-aware hardware Trojan detection

@ Springer

Journal of Hardware and Systems Security

and effective solutions to propel the field of HT detection
forward.

1.2 Contributions

In this paper, our primary focus revolves around uni-
modal and multimodal deep learning for the identification
of HTs, and addressing the inherent challenges associ-
ated with this problem, for example, missing modalities
and imbalanced dataset. The first challenge pertains to
effectively handling missing modalities and implementing
uncertainty-aware multimodal fusion approaches. To address
this, we utilize graphical representations of circuits [11]
and Euclidean data derived from processing the Abstract
Syntax Tree (AST) of Register Transfer Level (RTL) files
(i.e., Verilog) [12]. While multimodal approaches have been
employed to enhance model accuracy in various domains,
their application in Trojan identification has been notably
absent. For uncertainty-aware multimodal learning, we advo-
cate for implementing logic at the information fusion level of
modalities, leveraging p-values aggregation with conformal
prediction.

The second challenge we tackle is the quantification of
uncertainty associated with HT prediction outcomes and
ensuring the validity of predicted labels, especially when
dealing with a limited number of highly imbalanced data
points. Specifically, our interest lies in the ability of a ML
classifier to predict the true label of a new data point with a
95% provable guaranteed coverage, a crucial requirement in
risk-sensitive domains. Designing such a system holds poten-
tial benefits for decision-makers investigating detected labels
as “Trojan-Infected.” Additionally, we explore the possibil-
ity of ranking detected “Trojan-Infected” circuits to enable
more informed treatment decisions.

Comparing our method with state-of-the-art approaches,
we illustrate the overarching framework in Fig.2. The dia-
gram also highlights the current limitations of prevalent ML
frameworks for HT detection, including binary predictions,
a lack of trust in predictions due to calibration issues, and an

Fig.2 The input feature is
passed to a conventional
machine learning hardware
Trojan detector

m Trojan Free

Trojan Infected _ . __ .. ___ . __ ..
[No Guarantee

x| fley

Machine Learning Approach

Hardware Trojan Detection Engine

absence of coverage guarantees. Our primary contributions
are summarized as follows:

e Proposing a multimodal learning approach using graph
and Euclidean data of the hardware circuits. This study
is the first to investigate and implement a multimodal
approach for HT detection, emphasizing uncertainty
awareness.

e Suggesting a model fusion approach that systematically
assesses each modality’s contribution to the overall pre-
diction. This enhances interpretability and facilitates
more robust decision-making.

e Addressing the challenges of missing modalities and
solving the issue of handling an imbalanced and small
dataset by leveraging generative adversarial networks.

e Introducing the notion of HT evolution and providing an
innovative method of creating evolving HTs with high
precision using a conformalized generative adversarial
network.

e Suggesting a tunable significance level through confor-
mal prediction for HT detection by using the concept of
guaranteed coverage of the prediction set.

e Defining an algorithm-agnostic and explainability-aware
reject prediction made by the ML model. When the model
is uncertain about identifying the evolving Trojan, it
rejects the prediction, passing it to a human for manual
investigation.

e Proposing a ranking mechanism for the evolved Trojans
by assigning a confidence score from the prediction.

2 Related Works and Preliminaries

Detection of HTs using traditional ML techniques has pri-
marily focused on modeling methods. Various algorithms
aim to enhance overall accuracy by detecting HTs based on
features extracted from RTL code, presented as tabular and
graphical representations of the circuit. Surveys on ML for
HT detection have been conducted in [13-16].

Uncertainty Quantification

£

Conformal Prediction (UQ)

z (71 (0.5))

Set Prediction Cy(z) %
{TF,TI,T —EV} {T - EV (0.83)}

x| fley

@ Springer

Journal of Hardware and Systems Security

Image classification techniques have been exploredin [17]
and [18], while multimodal image processing is utilized in
[19]. Most papers focus on feature extraction from gate-
level netlists, employing ML models such as Support Vector
Machine (SVM) [20], Neural Network (NN) [21], eXtreme
Gradient Boosting (XGB) [22], and Random Forest (RF)
classifier [23].

In addition, Reinforcement Learning (RL) has gained
success in various domains, including hardware security. RL-
based static detection [24] and RL with adaptive sampling
for on-chip detection [25] are notable examples. The com-
mon approach involves training the classifier model initially
and adjusting hyperparameters to minimize the false nega-
tive rate, improving overall accuracy. Graph Neural Network
(GNN) [26, 27] and AST [28] are generated for RTL code,
yet there is a need to clarify how graphs carry both structural
and behavioral attributes of the circuits [29].

Addressing concept drift after deploying a model is cru-
cial. In security applications, [30] maps data samples into a
space with fewer dimensions and learns a distance function
for evaluating differences. Surprisingly, concept drift in the
HT domain, despite potential evolution over time, has not
been extensively studied.

On the other hand, explainability in ML for hardware
security is explored in [31-33]. They use SHapley Addi-
tive exPlanations (SHAP) on benchmark datasets, showing
promising results. However, SHAP has drawbacks, including
disregarding causality and being influenced by human bias. It
assesses feature contributions without explaining their real-
world behavior.

Furthermore, multimodal learning has been explored in
the Al community, with applications in understanding prob-
ability distributions across inputs with multiple modes [34].
Our work targets graph and Euclidean data fusion as modal-
ities of interest, along with uncertainty estimation [35].

In the hardware security domain, dealing with fewer mali-
cious data points necessitates working with small data [36].
This challenge has been addressed in various domains, such
as material science [37] and anomaly detection [38].

2.1 Multimodal Learning

Multimodal learning [39] addresses complex problems by
integrating information from multiple modalities, such as
text, images, and audio, to obtain a comprehensive under-
standing of a given phenomenon. In our case, we use
graphical data and tabular representations of the source cir-
cuits. This approach enables models to capture nuanced
relationships that may be overlooked when considering each
modality in isolation and thus empowers the model to make
more robust predictions.

From a mathematical perspective, multimodal learn-
ing involves the integration of data representations into a

@ Springer

unified framework. Let X, X», ..., X represent M different
modalities of data, each with their respective feature spaces
Fi1, Fa, ..., Fy. Thetaskistolearn amapping f thatcaptures
the relationships between these modalities. Mathematically,
this can be formulated as:

fiFAXFPXx..xFy—>Y (1)
where) is the target space, representing the desired predic-
tion.

The challenge lies in effectively combining information
from diverse modalities, which can be approached through
various techniques such as late fusion or early fusion.

In late fusion [40], features are extracted independently
from each modality and then combined at a later stage. This
approach treats modalities as separate entities until a decision
needs to be made and can be represented as:

F O, x, e, xm) = g(hi(x1), ha(x2), ..., hyr (xm)) (2)
where h; represents feature extraction for modality i, and g
combines the extracted features.

In early fusion [41], information from different modalities
is combined at the input level, resulting in a joint feature
representation which can be expressed as:

S XM) 3)

fx1,x2, o, xp) = hxy, x2, ...

where h combines the raw input data from all modalities.

2.2 Calibrated Prediction

Calibration involves ensuring that a model’s confidence
score accurately reflects the true probability of the pre-
diction’s correctness [42]. Let X be the input data, and
Y be the output label. Given a training dataset D =
(x1, y1), (x2, ¥2), ..., (Xn, yn), the goal is to learn a function
f that can predict the correct output label y for a given input
x. The output of the model for an input x can be denoted as
f(x), and the true probability of the prediction’s correctness
can be denoted as P(y = 1]x). A calibrated model produces
a confidence score g(x) that reflects the true probability of
correctness of the prediction. The goal of calibration is to
ensure that the confidence score g(x) is well-calibrated, i.e.,
P(y = 1|g(x) = p) = p for all p in the range [0, 1].
Calibration is a crucial aspect in HT detection since it aids
in determining the likelihood of the existence of a Trojan in
a circuit, which can have a significant impact on decision-
making. In situations where a model’s confidence score is
high, but the likelihood of a Trojan’s presence is low, it is rea-
sonable to assume that the circuit does not contain a Trojan.
Conversely, if the confidence score is low but the likelihood

Journal of Hardware and Systems Security

Algorithm 1 Mondrian ICP

Input : Training data D, test instance x, significance level «,
number of trees 7', and maximum tree depth d.
Output: Prediction set C(x) for x.
1 Divide D into T disjoint subsets Dy, . ..
2 fort < 1to T do
3 Sample D, from D, by recursively partitioning D, along
randomly chosen hyperplanes until each partition contains
at most 2d points.
4 Train a classification model M; on D;.

, Dr;

5 Compute the conformity scores s;(x) of x with respect to each
model M;.

6 Sort the conformity scores s, (x) in decreasing order.

7 Compute the p-values p; of the T conformity scores s; (x)
using the formula p; = %

8 Compute the threshold & such that h = s;(x) if p; > «,
otherwise h = oo.

9 Construct the prediction set C(x) as the set of all labels y such
that s;(y) > h for all models M;.

10 return C(x)

of a Trojan’s presence is high, further investigation of the
circuit is necessary.

2.3 Conformal Prediction

Conformal prediction [6] as shown in Fig.3 is an ML
framework that quantifies prediction uncertainty by gener-
ating prediction sets. It enhances the inference of traditional
models, ensuring reliable validity and enabling confidence
estimation for individual predictions. In the context of detect-
ing HTs, label-conditional validity is a vital property when
dealing with an imbalanced dataset where label proportions
differ significantly. This is particularly relevant since the
likelihood of encountering a Trojan on a circuit is gener-
ally low. In addition, it is worth noting that minority classes
are often disproportionately impacted by errors when label-
conditional validity is absent [43]. However, this issue can
be mitigated by ensuring label-conditional validity, which
guarantees that the error rate for even the minority class will
eventually converge to the chosen significance level in the
long term. Sometimes, conformal prediction may produce
uncertain predictions, meaning that prediction sets contain
more than one value. This occurs when none of the labels
can be rejected at the specified significance level.

x| fley

¢ point prediction

When using conformal prediction, the confusion matrix
differs slightly from the conventional one due to the unique
nature of prediction sets, which consist of multiple values
rather than a single value. In the case of binary classification,
it is essential to consider the number of correctly predicted
examples, which have a prediction set containing only the
correct label, as well as the number of incorrectly predicted
examples, where the prediction set includes only the incor-
rect label. Additionally, it is important to take into account
the number of inconclusive predictions that occur when the
prediction set contains both labels, as well as the number
of examples with an empty prediction set. Furthermore, in
some cases, it may be more appropriate to provide a single
value point prediction instead of a prediction set or interval
in a hedged forecast. In such cases, selecting the label with
the highest p-value is a simple and reasonable option. The
point prediction can be hedged by incorporating additional
information that describes the uncertainty.

Our work relies on Mondrian Inductive Conformal Predic-
tion (ICP) [44] in Algorithm 1 and to decrease the rate of false
negatives in alert systems, we require class-based authentic-
ity for samples classified as “Evolving Trojan.” Additionally,
we must ensure that the samples labeled as “Evolving Trojan”
are indeed genuine to attain this goal.

When calculating the non-conformity scores, we only con-
sider the scores related to the examples that share the same
class as the object x,1, which we are testing hypothetically
as shown below:

. C
{z el,...,q:yizck,anil Sai”
Hiel,...

Ce _
pn+1 -

g 2 yi = Cill
2.3.1 Time Complexity Analysis

The time complexity of the Mondrian ICP algorithm using
Mondrian forests is analyzed considering » as the size of the
training dataset D, T the number of trees, d the maximum tree
depth, and m the number of features. The initial partitioning
of D into T disjoint subsets is a linear operation with respect
to n, resulting in a time complexity of O (n).

Training each Mondrian tree M; involves recursive par-
titioning, which has a complexity of O (d-% -m), and
tree training, which incurs O (% - m - log (%)). Aggregating

Plye Y] >1—¢ | fldy

guaranteed coverage

? calibrated classifier

nonconformity calibration

a=s(f(x),y) = {(zi,y) oy — Q1 Q2 a3 An—sq = qqui1)1—c) =Y = {y | s(f(2),y) < ¢}

sorted calibration

set prediction

quantile

Fig.3 Illustration of conformal prediction framework, showcasing the key components and stages involved in the process

@ Springer

Journal of Hardware and Systems Security

these across T trees yields a total training complexity of

O<d~n-m+n~molog(%)).

The subsequent steps-computing conformity scores, sort-
ing, p-value calculation, and constructing the prediction
set-contribute O(T), O(T logT), O(T), and O(T) respec-
tively. Combining all steps, the overall time complexity is

O(n+d-n-m+n-m-log(%>+T10gT).
Assuming 7 and d are constants, this simplifies to
O -m-logn).

The best-case scenario arises when Mondrian trees are per-
fectly balanced with minimal depth, resulting in linear time
complexity 2 (n-m). In average cases, where trees are moder-
ately balanced with typical data distributions, the complexity
is ®(n-m-log n), reflecting expected real-world performance.
The worst-case occurs with extremely unbalanced trees, large
depth, and high feature dimensionality, leading to

On-m-d+n-m-logn+TlogT).

The Mondrian ICP algorithm with Mondrian forests is
computationally efficient for large datasets due to its online
tree construction and probabilistic calibration. However, per-
formance is influenced by the number of features m and tree
depth d. While it is well-suited for applications requiring fast
updates and calibrated outputs, scalability issues may arise
with high-dimensional data or deep trees. Future optimiza-
tions could target feature selection and adaptive depth control
to enhance scalability while preserving predictive robustness.
The asymptotic notations summarizing these are presented
in Table 1.

2.4 Guaranteed Coverage of Prediction

In the domain of HT detection, it is not only important to
have a high level of confidence in the predictions made by
a model but also a guarantee of the coverage of each pre-
diction. The property of guaranteed coverage is an inherent
property of conformal prediction, which provides statistical

Table 1 Asymptotic notations for Mondrian ICP algorithm

Asymptotic notation Complexity
Big-O (upper bound) O(n-m-logn)
Big-Q2 (lower bound) Qn-m)
Big-© (tight bound) O(n-m-logn)

@ Springer

guarantees of the correctness of the model’s predictions [45].
The theoretical guarantee of coverage is based on the signif-
icance level, which is the probability of the model making a
mistake. For example, if we set the significance level to 0.05,
it means that we allow the model to make mistakes only 5%
of the time.

The theoretical guarantee of coverage is valid for any input
x, that the true output label y will be contained in the predic-
tion set C(x) with a probability of at least 1 — «, where « is
the significance level. Mathematically, this can be expressed
as:

PyeCx)>1—-«

In other words, the probability of making a mistake is
bounded by «, and as « decreases, the size of the prediction
set decreases, leading to higher confidence in the model’s
predictions. For example, if we set « = 0.05, it means that
we are 95% confident that the true output label y is contained
in the prediction set C(x) for any input x. The use of confor-
mal prediction provides a strong theoretical guarantee of the
correctness of the model’s predictions in the context of HT
detection, and the corresponding proofis given in Theorem 1.

Theorem 1 Let D be a probability distribution over a set
X x {0, 1}, where X is a set of input features and {0, 1} is
the set of labels. Let f : X — {0, 1} be a binary classifier,
and let € € (0, 1) be a confidence level. Then, the conformal
prediction algorithm outputs a set of predictions C(x) C
{0, 1} for each input x € X such that:

Pl(x,y) ~D,ye C(x)] =1 —¢

where (x,y) ~ D denotes sampling a pair (x,y) from the
distribution D.

Proof The proof follows from the construction of the con-
formal prediction algorithm. Given an input x, the algorithm
outputs a set of predictions C (x) based on the observed labels
of the training examples with similar input features to x. The
algorithm guarantees that each prediction in C(x) has a p-
value less than or equal to € for any new input with the same
feature vector as x. Since the algorithm outputs a set of pre-
dictions, the probability that at least one of the predictions is
correct is at least 1 — €. O

Corollary 1 Let D, f, and € be as in Theorem 1. For any sam-
ple size n, the conformal prediction algorithm outputs a set of
predictions C(x1), ..., C(x,) foreachinputxy, ..., x, € X
such that:

Pvie{l,...,n}, (x;,y)) ~D,y, € C(xj)]| =1 —¢€

where (x;, yi) ~ D denotes sampling a pair (x;, y;) from the
distribution D for each i.

Journal of Hardware and Systems Security

Proof The proof follows from a union bound over the n sam-
ples:

Pvi e {1,...,n}, (x;,yi)) ~D,y; € C(x;)]

> 1= Y Pl(xi,y) ~ D, yi ¢ Cxi)]
i=1

> 1 —ne

where the second inequality follows from Theorem 1. O

3 Notion of Evolution and Hardware Trojans

Darwin, in his book, On the Origin of Species, referred
to “descent with modification,” instead of evolution. Fur-
ther, a more expansive definition of evolution was given by
Futuyma [46]: “[biological evolution] is change in the prop-
erties of groups of organisms over the course of generations;
it embraces everything from slight changes in the propor-
tions of different forms of a gene within a population to the
alterations that led from the earliest organism to dinosaurs,
bees, oaks, and humans.” Now, we narrow down the notion
of evolution for HTs based on the following assumptions:

e The structural (genotype) and behavioral (phenotype)
characteristics of HTs change over a period of time, and
the changes are induced by the attacker;

e Structural changes can be mathematically formulated for
the evolved Trojan as

EHT - HT.HTstructural_changes

where HT is an existing Trojan and B is the operation
for structural changes which creates an evolved Trojan
Enr;

e Behavioral changes are mapped with natural selection,
which is the driving force for evolution. The attacker
designs the HT such that it adapts to the IC (ecosystem)
and its malicious impact is not easily detectable on the
circuit. (i.e., it increases its chance of survival.)

We use the above assumption to include the notion of
evolution and derive an evolved dataset in an ML-based HT
detection engine. In the context of HTs, we can either detect
the evolution or predict the evolution way ahead of time. The
detection can be performed using anomaly detection [47];
however, here we will be focusing on the prediction of evolu-
tion. If we can predict the evolutionary changes in the dataset,
a specific treatment can be performed to mitigate the impact
of HT insertion. To the best of our knowledge, we have not
come across any work in the literature that considers the evo-
lutionary aspect while designing HT detection approaches.

Algorithm 2 Conformalized GAN
Input

: Training dataset D = {(x;, y;)}i_,, where x; € R”
and y; € {0, 1} are the feature vector and label for the
i-th example, respectively; significance level «;
number of conformal predictors M; GAN generator
G discriminator model D

Output: Conformalized discriminator model Dcp

1 form = 1to M do

2 Dy, < bootstrap sample of D;

3 Train GAN generator G, on Dy, ;

4 Generate synthetic dataset D;’;mh = {Gn(zi)}_,, where
zi € R* are random noise vectors;

5 Train discriminator model D,, on D,, U D:';,mh;

6 fori =1tondo

7 Xi < (i} U{Gn@IM_,,

noise vectors;

8 CP; <« conformal predictor trained on (X;, y;) with

significance level «;

9 | pi < CPi(D(xi));

10 Train conformalized discriminator model Dcp on
{Cxis yis POY 15

11 For each sample x; in the test set D;.y;, make a prediction based
on whether D(x;) is within the prediction interval /;:

where z; € R¥ are random

1 ifD(x;) ¢ I;
0 ifD(xi) S Il'

12 return Dcp

The evolutionary dataset optimization discussed in [48]
optimizes any real-valued function over a subset of the space
of all possible datasets. It is not feasible to adapt this method
for our use case as our real-time data will be Non-Independent
and Identically Distributed (Non-IID). An alternate approach
can be to use evolutionary algorithms, as discussed in Box2d
[49]. There, the problem statement is to evolve the struc-
ture of a toy car, provided the geometry of the car shape is
translated to chromosomes. The issue with this approach is
that we should know how the evolved car looks; however, in
our case, we never know the structure of the evolved Tro-
jan.

3.1 Genetic Algorithm

Genetic Algorithms (GAs) [50] have been used to evolve
the architecture of NNs for understanding the security of
logic locking [51]. The most challenging part of using GA is
designing a fitness function. In our case, one possible design
of fitness can focus on the ensemble efficiency of detection
methods and then compare the similarity of the child Trojan
with the list of HTs in a dictionary. However, the limitation
of this fitness function is that it will never be able to estimate
the fitness of Trojans that are out of distribution.

@ Springer

Journal of Hardware and Systems Security

3.2 Generative Adversarial Network

Based on the game theory and optimization approach, the
objective of generative modeling [52] is to analyze a set of
training examples and acquire knowledge about the likeli-
hood distribution that created them. Generative Adversarial
Network (GAN) has been successfully used for detecting
fake images [53] and text-to-image synthesis [54]. In the
recent past, there has been a shift in focus towards the utiliza-
tion of GANs for working with tabular data. An instance of
this approach is used for conditional GAN, as demonstrated
by [55], which models tabular data and is also effective with
imbalanced data. A few of the open source libraries are [S6—
58]. Here are three prime motivations for using GAN for
synthesizing the HT dataset.

3.2.1 Highly Imbalanced Data

In areal-time scenario, the labels for Trojan-Infected circuits
are very rare and difficult to detect. This gives rise to the prob-
lem of animbalanced dataset. Based on the existing literature,
we believe GANs can be used to generate a more realistic
synthetic dataset that complements the training phase.

3.2.2 Non-lID Case for Law of Large Number

The evolved Trojan may or may not be from the same dis-
tribution, and for this reason, we have to consider the case
of Non-IID random variables. One such example is demon-
strated in [59]. We also know that for a large enough dataset
with Non-IID samples, the sample mean will converge to
the true population mean as the sample size increases. This
implies that as the size of the dataset increases, the statistical
properties of the data become more reliable and consistent.
Thus, the larger the dataset, the more accurate the model is
likely to be, provided that there are enough computational
resources to effectively process the data. The proof given in
[60] for the strong law of large numbers can be generalized to
an r-dimensional array of random variables where the suffi-
cient condition becomes E (|X| (logJr |X|)r_l> < oo based
on the theorem and corresponding proof for Non-IID given in
[61]. The Non-IID case is worthy of our attention, as evolved
HT might not represent the same distribution of population
in real-time.

Theorem 2 The strong law of large numbers for Non-
IID random variables states that, if X1, X2, ..., X, are a
sequence of non-identically distributed random variables
with finite means |41, L2, ..., n, then for any € > 0,

n

L Var(X;)
P(ngrgo;;<xi—ui>=0>=1—2 RS
1=

i=1

@ Springer

Here, Var(X;) denotes the variance of the i-th random
variable X;.

3.2.3 Risk Sensitive Application

Given the potential for significant financial losses, we cannot
afford to tolerate even a small probability of misclassifica-
tion. To mitigate this, we start by designing a near-realistic
synthetic dataset using GAN by conformalizing the discrim-
inator and generator.

4 Unimodal Hardware Trojan Detection

First, we consider the data to be unimodal and propose
PALETTE, an exPlainable frAmework for evoLving hard-
warE Trojan deTEction as shown in the left side of Fig. 1.

The first step is to extract the dataset, and in the case of
HTs, we can have images, tables, and graphs as input dataset
for HT classification. For example, the features extracted
from an IC can be Scanning Electron Microscope (SEM)
images, as used in [62, 63]. There has been a growing adop-
tion of GNN for HT detection [26] by first converting the
RTL-level code to AST and then either performing a graph
classification or transforming the graph to a vector and then
performing the classification. In our case, we have used
the features extracted based on code branching from the
TrustHub chip-level Trojan dataset [12] and the netlist syn-
thetic dataset based on GAINESIS [64].

We then introduce the Conformalized GAN algorithm,
which is illustrated in Algorithm 2. Our algorithm is inspired
by [65], which leverages principled uncertainty intervals to
generate high-quality images from corrupted inputs, and
the uncertainty intervals provide a guarantee of contain-
ing the true semantic factors for any underlying generative
model. The algorithm utilizes conformal prediction to gen-
erate evolving HTs and determine its associated level of
confidence using prediction intervals; however, we must note
that the absence of robustness guarantees in the proposed
method leaves it vulnerable to adversarially crafted Trojans
designed to evade detection. A comparison of Trust-Hub
source dataset with the synthetically generated data, which
we call the evolved dataset, is shown in Fig.4 and the cor-
relation matrix in Fig.5. In contrast with traditional GANs
our proposed method provides a more reliable means for
generating evolving HTs. The comparison between real and
synthetically generated datasets within the Trust-Hub chip-
level Trojan dataset involves examining individual features
to discern differences and similarities is shown in Fig. 6. This
analysis aims to elucidate how effective and applicable syn-
thetic data is in comparison to real-world instances.

Furthermore, the dataset is further fed as input to the
conformal inference engine, which outputs set predictions

Journal of Hardware and Systems Security

Fig.4 Comparison of real and
synthetically generated dataset

Absolute Log Mean and STDs of numeric data
Means of real and synthetic data

Stds of real and synthetic data

on Trust-Hub chip-level Trojan
dataset

Synthetic data mean (log)

Synthetic data std (log)

-3 -2 -1 0

real data mean (log)

instead of point predictions based on the significance level.
The method is algorithm-agnostic as any ML classifier
such as statistical or deep learning can be used. The non-
conformity score is calculated for each prediction. The
p-value represents the probability that the prediction is cor-
rect and is used to determine the guaranteed coverage. The
important part of the solution is how we interpret the results
in a risk-sensitive domain where we cannot tolerate even a
single wrong decision.

Fig.5 The correlation matrix
illustrates the difference
between a real dataset and its
synthetically generated
counterpart, highlighting
differences in feature values

Block# (con)

Pout (con) .

1 2 3 -4 =2 0 2 4
real data std (log)

Finally, we derive four different inferential use cases based
on conformal inference. The motive is to quantify the uncer-
tainty associated with each prediction and reduce the False
Discovery Rate (FDR) for Trojan-Free (TF), Trojan-Infected
(TT), or Evolving Trojan (T-EV).

1. The firstis guaranteed coverage, which claims that based
on the user-defined significance level, the predicted label
will belong to that class. Here, considering the degree of

Difference

Pe (con) . 030
pmost (con) [N I H EEETEEE g
RP (con) .-. .- IUHIIII ..-.
naep (con) IINEEE ETEHEEE B 020
Ncon (con) 15
Cdep (con) .. - o
Blockbit (con) .- -0.10
Branchbit (con)
Maxbranchbit (con) -. e
Minbranchbit (con) . -0.00

Blockbranch (con) .

NewRcond (con)
Trojan (con)

—~ e s s s s e s e e e

== e e I =

Block#

Pout

|COND|
Pmost

Ndep

Ncon

Cdep
Blockbit
Branchbit
Maxbranchbit
Minbranchbit
Blockbranch
Rbit
NewRcond
Trojan

@ Springer

Journal of Hardware and Systems Security

® Real Fake ® Real Fake ® Real Fake

® Real Fake ® Real Fake ® Real Fake

10 ? 1 - 1 .o
o
o . a6
£ E E 13 E 13
5 5 5 5 3 5
2 2 2 32 2 2
£ E E E =t E
5 5 5 5 5 5
[§) 3o s} (S I O o o
o
s s w o o w0 1 12 0 075 100 125 150 175 200 225
Block# Pout ICOND P Pe Pmost
® Real Fake ® Real Fake ® Real Fake ® Real Fake ® Real Fake ® Real Fake
o oo wlge o ° ’ 10
r r] . [be o f. 0 . (]
s

o o o
E £ £ € E E
5 5 3 5 5 5
2 2 3 3 3 2
13 £ E E E E
5 5 5 5 5 5
O I 3 3o S 3 3

02 l 2

I e ami i

w0 o5 10 15 20 25 30 T s w = » » = o » © @ ™ w w w0 o5 10 15 % © @ w w v © w x
RP Ndep Ncon Cdep Blockbit Branchbit
® Real Fake ® Real Fake ® Real Fake ® Real Fake ® Real Fake ® Real Fake
10 ' s 0 ° ° - - -
o0 o

ae 0 a o
& E E E E E
5 5 5 5 5 5
2 2 2 2 2 2
£ £ £ E 13 13
5 H] 3 3 5 5
3 (s 3 3. O 5]

o = »

© © & w0 20 © @ ® 100 s 1 s
Maxbranchbit Minbranchbit Blockbranch

Fig. 6 Comparison between real and synthetically generated datasets
within the Trust-Hub chip-level Trojan dataset, focusing on individ-
ual features. The analysis aims to highlight distinctions and similarities

risk associated with the prediction, a significance level is
defined and applied to the p-values of each label for each
data point.

2. The second is an inherent property of conformal predic-
tion that results in a set prediction which can have all
the labels {TF, TI, T-EV}, a combination of labels {TF,
T-EV} or {TI, T-EV}, or a single label {TF}, {TI}, or
{T-EV}.

3. The third, ranks the predicted HTs by calculating the
confidence of each prediction and using it to rank the
severity of being infected with a Trojan (TIL, T-EV). The
purpose of ranking is to prioritize which one to take action
on first for mitigation.

4. Finally, the fourth is the calibrated explanation for the
predictions, where the model says: “I don’t know” and
rejects the prediction. The proposed method overcomes
the issues of local explanations by SHAP and provides a
calibrated approach to reasoning out why a certain pre-
diction has to be rejected. This is achieved by a NULL

@ Springer

o 05 10 15 2 . 0s o
Rbit NewRcond Troian

across features, shedding light on the efficacy and applicability of syn-
thetic data in relation to real-world instances

set, indicating that the model is not able to output the
prediction for a specific significance level (1 - «).

5 Multimodal Hardware Trojan Detection

Now we emphasize on the need of multimodality for
HT detection by proposing NOODLE, an uNcertainty-
aware hardware TrQjan detectiOn using multimoDal deep
LEarning. While state-of-the-art works on HT detection have
focused mainly on choosing the right algorithm and choosing
different representations of the dataset for improved accu-
racy, incorporating different modalities of the same data and
feeding it to the ML system has not been investigated. By
performing information fusion derived from different modal-
ities, a more refined data representation can be achieved.
Furthermore, in a practical scenario, we encounter missing
values while collecting data, and this may lead to missing
modalities when dealing with a multimodal ML approach.

Journal of Hardware and Systems Security

So, we also need a method that handles missing modalities
for any given dataset. Lastly, in the domain of hardware secu-
rity, it is difficult to get enough data for training, especially
the Trojan-Infected circuits, because of the rarity of the event.
In such a situation, we need to work with limited data.

Our proposed framework is shown in the right side of
Fig.1 emphasizing the design and implementation, and a
pseudocode is also provided in Algorithms 3 and 4. We
choose to use two modalities, i.e., graph and tabular data
representations. Methods such as multimodal autoencoder
[66] have been used for handing missing modalities; how-
ever, we use GANSs [67] to increase the dataset size to 500
data points as it aims to generate samples that are consis-
tent with the joint distribution of the observed modalities
and facilitate more effective multimodal fusion. The data
points labeled as Trojan-Free (TF) will be segregated, and
only these will be used to generate more data points using
GAN so that they represent the same label, and we will do
the same for data labeled as Trojan-Infected (TT). Before per-
forming multimodal learning, we first explain the working of
uncertainty-aware model fusion.

To perform an uncertainty-aware multimodal fusion, we
leverage conformal prediction p-values for the model fusion
as described in Algorithm 4. First, we use a Convolutional
Neural Network (CNN)-based classifier for graph and tabular
data sources with a designed non-conformity score that pro-
vides p-values for each label and for each data modal. The
below non-conformity score can be used to get calibrated
conformal predictions:

T
NS = Z Bi(x, y) “)

t=1

where B;(x, y) is the non-conformity score of (x, y) com-
puted from a classifier, /;. Thus, for every class label y(j),
j €{l,..., M}, we have an individual NULL hypothesis for
each data source, HOy, HO,, ..., HOy, where M is the num-
ber of class labels, which in our case is either TF or TI,
and N is the number of data sources. Thus, for every class
label y(j), we obtain N p-values, p(i),i = 1, ..., N (one
for each modality). These p-values are then combined into
a new test statistic C(p(1), ..., p(N)), which is used to test
the combined NULL hypothesis HO for class label y(j). The
conformal prediction region at a specified confidence level,
rE, is then presented as a set containing all the class labels
with a p-value greater than 1 — E. The mentioned steps help
in the realization of uncertainty-aware multimodal fusion.
After obtaining a sufficient number of data points for
the experiment, we implement multimodal ML using the
graph and tabular data. Specifically, we have employed a

Algorithm 3 Multimodal deep learning

Input : RTL-level files (Verliog) of circuits

Output: Decision (D) = Trojan-free or Trojan-infected
1 for each circuit C do
2 Convert C to Graph data G and Euclidean data T.
if 3 missing modalities then
3 L perform GAN to impute the missing modality.

4 Feed the modalities to CNN-based classifier.
for each modalities M do

5 Use Algorithm 4 for uncertainty-aware information fusion.
6 Perform early fusion.
7 Perform late fusion.

8 Choosing the winning fusion method.
9 return D.

Algorithm 4 Uncertainty-aware information fusion

Input : Number of data sources NV;
Training sets for each data source
Tr= (G v, el) Ty =
{(fo), VI)senns (x,gN), Yn)}, where xi(” is the ith data
point belonging to the jth data source and y; is the
class label of the ith data point;
Number of classes M
Class labels y© e ¥ = {y(D, y@ y*)y,
Classifiers Sy, ..., Sy for each data source;
Confidence level E.

Output: Conformal prediction regions
rg = {yW) 1pp>1-— E,yY ey}

1 Get the new unlabeled example w.r.t each data source

1 (N)
n+l2 0 gl
2 Evaluate conformal predictors and classifiers Sy, . .

X

., SN
corresponding to each data source, compute p-values p;.'),
wherei =1, ..., N corresponds to the i/th data source and
j=1,..., M corresponds to the jth class label.

3 for each class label y, j =1,..., M do

4 L Compute p-value, p;, of combined hypothesis from N

modalities
5 returnrg.

CNN for binary classification. It is worth mentioning that
any ML model can be optimized through hyperparameter
tuning to enhance accuracy. However, our primary emphasis
is on assessing the effectiveness of uncertainty-aware mul-
timodality by accessing early and late fusions. Finally, the
model will be used to make further informed decisions for
the detection of HTs.

5.1 Time Complexity Analysis
The time complexity analysis of multimodal deep learn-

ing and uncertainty-aware information fusion can be broken
down as follows.

@ Springer

Journal of Hardware and Systems Security

Let n represent the number of circuits, m the number of
modalities, d the feature dimensionality, and 7 the number
of data sources.

For multimodal deep learning (Algorithm 3), each circuit
is first transformed into graph data G and Euclidean data
T, with a complexity of O(n - d) due to feature extraction.
If any modality is missing, a GAN is used for imputation,
which introduces a higher complexity of O(n - d?) due to
iterative updates and backpropagation. Each modality is then
processed by a CNN-based classifier, where the complexity
is O(n-m-L), with L being the number of CNN layers. Addi-
tionally, for each modality, Algorithm 4 (uncertainty-aware
information fusion) is invoked, adding to the computational
load. Early and late fusion methods are applied over m modal-
ities, contributing O (n - m), and finally, the winning fusion
method is selected with negligible overhead O(1).

The total complexity of Algorithm 3 sumsupto O(n-d +
n-d*>+n-m-L+n-m), which simplifies to O (n - d?) in
feature-rich scenarios where d > m.

For uncertainty-aware information fusion (Algorithm 4),
the training data is sourced from 7 data streams with n
samples each, resulting in O(n - T) complexity. Confor-
mal predictors evaluate p-values for M classes, leading to
O(n - T - M). Sorting these p-values for statistical analysis
adds O (n - M log M). Hypothesis testing and the construc-
tion of confidence regions further contribute O(n - T - M).
Finally, returning the prediction set incurs O (n).

The total complexity of Algorithm4is O(n-T -M +n -
M log M), which simplifies to O(n - M log M) if M log M
dominates 7M.

Combining the complexities of Algorithms 3 and 4, the
time complexity of the multimodal deep learning pipeline
becomes O(n - d* + n - Mlog M). In the best-case sce-
nario, with minimal feature dimensionality and a small
number of modalities, the complexity is Q2(n - d), indicat-
ing linear complexity. In an average case with moderate
feature size and a balanced number of modalities and data
sources, the complexity is ©(n - d> + n - M log M), rep-
resenting standard performance in real-world applications.
The worst-case scenario involves high feature dimensional-
ity, deep CNNs, and multiple modalities and sources, leading
toO(m-d*+n- M log M).

It is worth noting that while multimodal deep learning
and uncertainty-aware fusion scale effectively in real-world
applications, they are particularly sensitive to the feature
dimensionality d, number of modalities m, and data sources
T. The CNN training process dominates in feature-rich set-
tings, while uncertainty-aware fusion introduces additional
computational overhead due to p-value calculations and sort-
ing. Optimizations such as feature selection, dimensionality
reduction, and efficient p-value computations can enhance
scalability in high-dimensional datasets. The asymptotic
notations summarizing these are presented in Table 2.

@ Springer

Table 2 Asymptotic notations for multimodal deep learning and
uncertainty-aware information fusion

Asymptotic notation Complexity

O -d*>+n-MlogM)
Qn-d)
Om-d>+n-MlogM)

Big-O (upper bound)
Big-Q2 (lower bound)
Big-© (tight bound)

6 Experimental Results

For experiments, the augmentation of the dataset is imple-
mented using conformalized GAN, leading to the generation
of evolved HTs. In the case of multimodal data, we address
missing modalities by utilizing conformalized GAN tech-
niques. The experiment is divided into two distinct cases.
For the first scenario (i.e., PALETTE), characterized by a
unimodal dataset, the application of conformal prediction
on the source dataset is performed. This phase serves as
an illustrative platform, showcasing diverse aspects of infer-
ence such as guaranteed coverage, set prediction, ranking
of HTs, and calibrated explainability. For the second sce-
nario (i.e., NOODLE), the design of a multimodal deep
learning architecture adept at handling missing modalities
is achieved through the integration of conformalized GAN.
Subsequently, an ensemble fusion approach is devised, lead-
ing to the creation of a fusion framework. Within this
ensemble, the integration of uncertainty-aware information
fusion is implemented through conformal prediction. The
solutions are implemented using Python (version 3.9) on
macOS (version 13.3.1), utilizing a system with 8 GB of
RAM and a built-in GPU.

6.1 Unimodal Approach Experiments

For the unimodal approach, we use two sets of data. The
first dataset utilized is the synthetic GAINESIS dataset [64],
characterized by binary labels. The second dataset involves
the use of the Trust-Hub chip-level Trojan dataset [12]. This
dataset encompasses RTL source code files for each IP core
design, encompassing both malicious and non-malicious
functionalities. The malicious functionalities are typically
embedded within conditional statements that are rarely exe-
cuted. Consequently, the ML features are derived from these
conditional statements. We first generate 10,000 data points
using the proposed conformalized GAN with the given
source dataset and pick 20% of the evolved dataset. The gen-
erated dataset has labels T Fg and T I, where as the source
dataset has labels T Fs and T Is. In our evolved dataset, we
create three labels as shown below. First, Trojan-Free (TF)
which consists of T Fg and T Fg; second, Trojan-Infected
(TT) where we only consider the label T Ig; finally, the third

Journal of Hardware and Systems Security

Table3 PALETTE’s dataset split

Train Calibration Test
TF 1436 470 471
TI 114 33 44
T-EV 308 117 105
Total count 1858 620 620

label is Evolved Trojan (T-EV) which consists of the label
TIg.
Label ={TF,TI, T — EV}

The dataset is split into training set, calibration set, and
test set with a ratio 2:1:1, as shown in Table 3. The experi-
mental results with source code and the dataset are hosted on
GitHub.!

6.1.1 Baseline Model

For the baseline model, we use logistic regression as a classi-
fier to detect the evolving HTs, and we evaluate the accuracy
of the model as a performance metric. If we use logistic
regression to detect HTs, the overall accuracy is 0.85, while
if we use conformal inference as a wrapper over the logistic
regression, the accuracy increases to 0.88 for o = 0.05 and
0.90 for « = 0.1. This also shows the performance improve-
ment of any classification model when used with underlying
conformal inference. The confusion matrix of the base model
and conformal inference wrapper is shown in Table 4.

6.1.2 Conformal Inference

The results obtained after implementing conformal infer-
ence for detecting evolving HTs are shown in Table 5. Each
row represents the circuit and the truth value in columns
TF, TI, and T-EV. In addition, the p-values for each label
are mentioned in the columns pTF, pTI, and pT-EV. Finally,
the detected Trojan is mentioned in column y_pred with «
= 0.05. The column Conf represents the confidence score
of each detected label for each circuit, which is obtained
by 1 — 2™ p,.... An application of conformal inference is
the improvement of detection quality for evolving HTs. For
example, in Table 5, circuit 2 is detected as TF because the
p-values of TI and T-EV are less than the value of o = 0.05.
The circuit 4 is detected as T-EV, in which we see that p-
values for TF, TI, and T-EV are greater than the value of «,
so all the labels are set as T (True), and the maximum of
the p-value is specified for the detected label. For example,
with conformal inference, we can say that with 95% detec-
tion guarantee (as o = 0.05 decided by the user), circuit 4

! https://github.com/cars-lab-repo/PALETTE

Table4 Confusion matrix of base model and conformal inference with
significance level of 95%

Logistic regression Conformal inference

TF TI T-EV TF TI T-EV
TF 462 8 8 525 24 44
TI 11 26 2 0 10 7
T-EV 52 0 51 0 0 10

is detected as an evolving Trojan with a confidence score of
0.886. This helps the end user have granular-level reasoning
for trustworthy and robust decision-making.

Furthermore, we consider the dataset in two dimensions
characterized by three distinct labels: TF, TI, and T-EV. The
data distribution follows a bivariate normal distribution, with
diagonal covariance matrices assigned to each label. To pre-
dict sets, we utilize the MapieClassifier, which operates based
on the distribution of softmax scores corresponding to the
true labels. As shown in Fig.7, we compute prediction sets
for three different alpha values (0.2, 0.1, and 0.05), each
representing varying levels of class coverage. In instances
where the class coverage is insufficient, prediction sets may
turn out to be empty. This occurs when the model encoun-
ters uncertainty at the boundary between two labels. These
empty regions, termed the NULL set, tend to diminish as we
increase the coverage level. In Fig. 8, the training dataset is
partitioned into five folds, with each fold used as a calibra-
tion set. The plot shows the distribution of conformity scores
across each calibration set, with alpha = 0.1. It is noticed
that the estimated quantile shows slight variability across the
calibration sets.

We also share the results for binary labels (TF, TI) on
the GAINESIS dataset in Table 6. The method is validated
on 4600 synthetic circuits with and without Trojans, and the
corresponding confidence score is shown in the column Conf.

In addition, we explore variations of conformal predictors
as described in [68]. Table 7 shows that the Mondrian confor-
mal predictor is very strict on detecting the evolved hardware
Trojans as compared to the risk-adaptive prediction set raps,

Table 5 Conformal inference and associated p-vales for Trust-Hub
chip-level Trojan dataset

TF TI T-EV pTF pTI pT-EV y_pred Conf
1 T F F 0319 0 0.003 TF 0.997
2 T F F 0.243 0.002 0.006 TF 0.994
3T T F 0.161 0.078 0.016 TF 0.992
4 T T T 0.114 0.053 0.119 T-EV 0.886
5 T F F 0.645 0.001 0.004 TF 0.996
6 F F T 0.653 0 0.971 T-EV 0.365
7 T F F 0.3 0 0.002 TF 0.998

@ Springer

https://github.com/cars-lab-repo/PALETTE

Journal of Hardware and Systems Security

Predicted labels Number of labels for alpha=0.2

Number of labels for alpha=0.1 Number of labels for alpha=0.05

naive, and top_k methods with varying significance levels.
The naive and top_k first get the model output of the true
class, and naive makes the estimated set prediction by get-
ting quantiles from the score distribution, while top_k gets
the quantiles from the distribution of the ordered positions of
the true label. The raps method first sorts the model output
in decreasing order to get the cumulative output of the true
class and then uses it to obtain quantiles from cumulative
score distributions. Furthermore, with a very high coverage
of 95% (a = 0.05), raps and naive detect almost three times
more Trojans as compared to Mondrian, while the detection
coverage becomes almost similar when the coverage level is
increased.

In Fig.9, we show the estimated quantiles and the signif-
icance level (alpha) in statistical analysis. It shows that as
alpha increases, the estimated quantile tends to rise, allow-
ing for a broader acceptance region and a higher likelihood of
capturing extreme values. It spans three alpha levels (0.2, 0.1,
and 0.05), demonstrating that higher alphas may lead to quan-
tiles in uncertain areas, possibly resulting in the NULL set.
Conversely, lower alphas create stricter acceptance regions,
impacting quantile estimation.

6.1.3 Performance Metrics

Unlike classification task which produces Receiver Oper-
ating Characteristic (ROC) and Area Under Curve (AUC),

.7 Comparison of prediction sets generated for a two-dimensional dataset across three different alpha values

:0.2,0.1, and 0.05

conformal inference produces effective coverage and effi-
ciency, i.e., average prediction set size, as performance
metrics. The limitation of ROC and AUC is that they can
be impacted by an imbalanced dataset. In Fig. 10, we show
the two different performance metrics for Mondrian confor-
mal predictors. The coverage score measures the proportion
of instances in which the True label falls within the predicted
region. It is typically measured at different confidence lev-
els. Higher coverage indicates a more conservative prediction
method. Now, since validity is guaranteed for all conformal
predictors, the key performance metric is efficiency, i.e., the
size of the label sets, where smaller sets are more informative
and indicate higher efficiency. It is also a direct measure of
how good the conformal predictor is at rejecting class labels.

When evaluating conformal prediction methods, there are
several metrics that can be used to assess their performance.
In Table 8, we show the various performance metrics asso-
ciated with the detection mechanism for significance levels
ranging from 0.05 to 0.9. For example, avg_c indicates the
average number of class labels in the prediction sets; this
metric serves as a straightforward indicator of the conformal
predictor’s ability to accurately discard class labels. The sig-
nificance level is like a threshold that controls how often the
ML model makes incorrect predictions. If we set a higher
significance level, the model will make fewer errors, but its
predictions may be less precise. So, we need to find the right
balance to get the best results from our model.

100 A
80 80 1
80

60 60 1

60

40 1
40

20 204

0.2

0.8

04

0.0 0.2 0.4 0.6 0.0

Conformity scores

0.8 1.0 0.0 0.4 0.6

Conformity scores

10 0.2

0.4

Conformity scores

100

80
80 1

60

60

404

20 4 204

0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.0

Conformity scores

0.8 1.0 0.2 0.4 0.6

Conformity scores

0.8 1.0

Fig.8 The distribution of scores observed across calibration folds for the Mondrian Conformal Predictor. The visual representation offers insights
into the variation and spread of scores, providing a comprehensive view of the predictor’s performance in different calibration scenarios

@ Springer

Journal of Hardware and Systems Security

Table 6 Conformal inference for GAINESIS dataset

circuit TI TF y-pred Conf
1 FALSE TRUE TF 0.891
2 FALSE TRUE TF 0.796
3 FALSE TRUE TF 0.996
4 FALSE TRUE TF 0.997
4596 FALSE TRUE TF 1

4597 FALSE TRUE TF 0.991
4598 TRUE FALSE TI 0.995
4599 FALSE TRUE TF 0.989
4600 FALSE TRUE TF 0.992

6.1.4 Risk-Aware Ranking

We leverage confidence score from the conformal inference
as a ranking mechanism for evolved HTs. For the below-
given circuits 12, 13, and 14 from the Trust-Hub dataset, we
calculate their confidence score (C) with o = 0.05.

ap.0s(circuit 12) = {T — EV}c—0.8s
a.05(circuit 13) = {T — EV}c—0381
.05 (cireuit 14) = {T — EV}c=0.61

Confidence in a model’s prediction is determined by its
p-value which indicates the probability of obtaining a simi-
lar outcome under the NULL hypothesis. Higher confidence
implies greater accuracy. This metric is defined as:

Confidence(x) = sup{l — € : |Te(x)| < 1}

By ranking the predictions, conformal prediction can offer
a more informative way to assess the reliability of individ-
ual predictions. The ranked list allows decision-makers to
set thresholds or confidence levels for accepting or reject-
ing predictions based on their position in the ranking. This
provides a flexible tool for controlling the trade-off between
accuracy and reliability in different applications. In Table 9
we show the confidence and credibility of the detected labels.

Table 7 Comparison of conformal predictors with corresponding sig-
nificance level on Trust-Hub chip-level Trojan dataset

Alpha Mondrian Raps Naive Top_k
0.05 10 37 35 0

0.5 45 57 57 61

0.9 45 61 61 61

The credibility is obtained by considering the maximum p-
value of the given set prediction. Credibility quantifies the
quality of the new data points.

6.1.5 Calibrated Explanations for Reject

When the model is not able to detect evolving HT, the model
simply says, “I don’t know” by giving a NULL set as the
output. In a risk-sensitive domain, a model with no output is
better than a decision that is not confident. Our framework
also provides the reason for rejecting the decision with a cal-
ibrated explanation, as shown in Fig. 11, which is different
from traditional explainable methods. If we apply a signifi-
cance level of 0.5 to the given circuit, none of the p-values for
TF (0.45), T1(0.32), and T-EV (0.23) exceed the significance
level. As a result, we reject the decision. The explanation for
this rejection is based on Local Interpretable Model-agnostic
Explanations (LIME) [69].

However, the differentiating factor as compared to SHAP
(which disregards causality and is affected by human bias)
is that before providing any explanation for the rejection, we
ensure that it is calibrated. The approach begins by creating
modified versions of the original instance called perturbed
instances, where small random changes are introduced. Con-
formal prediction is then utilized to create prediction regions
that estimate the reliability or confidence level of the expla-
nations, and LIME is then used again on these perturbed
instances to generate explanations for each of them. The pre-
diction regions obtained through conformal prediction act as
a calibration mechanism, guaranteeing that the explanations
accurately reflect their level of reliability.

6.2 Multimodal Approach Experiments

For the multimodal approach, we use the features extracted
from the Trust-Hub RTL-level (Verilog) Trojan dataset based
on code branching features [12] and the graph dataset in
[11] which includes RTL source code files (Verilog) for each
IP core design containing both malicious and non-malicious
functions. The hyperparameter values used for multimodal
learning are provided in Table 10 to ensure the reproducibil-
ity of the experiment. We also use the synthetic dataset for
tabular and graphical representation of the circuits and their
relevant performance as loss is shown in Fig. 12. For the Tabu-
lar Model, the train loss initially decreases sharply but starts
to increase slightly afterward, suggesting potential overfit-
ting. Meanwhile, the test loss decreases initially but then
stabilizes, indicating that the model’s performance on unseen
data has reached a stable point. Similarly, the JSON Model
exhibits a steady decrease in both train and test losses, with
the test loss plateauing slightly. In both cases, observing the

@ Springer

Journal of Hardware and Systems Security

Fig.9 Distribution of the scores

Distribution of scores

with the calculated quantiles

230 few== alpha = 0.2
=== alpha=0.1
2009 - alpha = 0.05

150 A

Count

100 A

50 4

point where the test loss stabilizes or begins to increase can
approximate the convergence point. The experimental results
with source code and the dataset are hosted on GitHub.?

6.2.1 Brier Score

For any of the classification problem statements, the most
common performance metric is model accuracy, followed
by various other complementing metrics such as precision,
recall and F1-score. However, these metrics can be mislead-
ing in situations where the class distribution is imbalanced,
as in our case. For this reason, we have used the Brier score as
an evaluation metric for assessing the quality of probabilis-
tic predictions in the classification of HTs. The Brier score,
which offers insights into accuracy and calibration, is defined
as follows:

1 N
BS ==Y (pi—0)’)

i=1

where N is the number of instances, p; is predicted probabil-
ity for instance 7, and o; is the observed outcome for instance
i. The Brier score ranges from O to 1. A score of 0 indi-
cates perfect accuracy, meaning the predicted probabilities
perfectly match the actual outcomes. A score of 1 signifies
complete inaccuracy, where the predicted probabilities are
entirely different from the actual outcomes.

We begin the evaluation process by independently assess-
ing each modality. This involves conducting binary clas-
sification on both the graph dataset and the tabular data.
The resulting comparative Brier scores for these classifi-
cation tasks are presented in Table 11. The experimental
outcome demonstrates that, when employing the same CNN-

2 https://github.com/cars-lab-repo/NOODLE

@ Springer

Scores

based deep learning model with identical hyperparameters,
the graph dataset yields a superior Brier score (0.1798) com-
pared to the tabular data (0.1913). It is worth noting that while
we established a baseline model using CNN, any other alter-
native classification algorithms can also be employed in this
context. Then, we test the solution with two different infor-
mation fusion approaches, i.e., early fusion (feature) and late
fusion (decision). As shown in Table 11, the early fusion
approach, which combines the graph and tabular data before
processing, yields a Brier score of 0.1685. On the other hand,
the late fusion strategy, which integrates the graph and table
data after individual processing, demonstrated the best per-
formance with a Brier score of 0.1589.

It is worth noting that neither of these data fusion methods
can be deterministically labeled as superior [70] as each one
of them will demonstrate their potential to produce favorable
outcomes when the data distribution changes. For this reason,
we implement both of the fusion approaches and choose the
approach that provides a better Brier score (i.e., closer to 0),
as mentioned in Step 8 of Algorithm 3. The corresponding
Brier score distribution with mean interval is also shown in
Fig. 13a and b for early and late fusion, respectively. This
provides a comprehensive view of predictive accuracy across
multiple scenarios and is also useful for comparing models
and understanding the variability in performance.

6.2.2 Confidence Calibration Curve

The confidence calibration curve plots observed probabilities
of occurrence as a function of the predicted probabilities for
the classification model, as shown in Fig. 14. For the model
to be perfectly calibrated, it will have all data points along
the diagonal; however, in our case, the model is not well
calibrated because of the highly imbalanced dataset. These
are the cases on which any decision-maker should focus while

https://github.com/cars-lab-repo/NOODLE

Journal of Hardware and Systems Security

1.0q — splitl
—— split 2
— split 3
084 — split4
— Split 5
[
3
5 0.6 1
>
o
(¥
[
2
=]
;:d 0.4
w
0.2 |
004 7
0.0 0.2 0.4 0.6 0.8 1.0
1 - alpha

3.0 1 — split1
—— Split 2
— split 3
2571 — split4
—— Split5

Average of prediction set sizes

0.0 0.2 0.4 0.6 0.8 1.0
1 - alpha

Fig. 10 Effective coverage and average prediction set size for Trust-Hub chip-level Trojan dataset

making a risk-aware decision and not completely relying on
accuracy alone. It helps evaluate the alignment between a
model’s predicted probabilities and the actual likelihood of
events.

A histogram at the bottom of Fig. 14 shows the predicted
chance for 109 test data. It describes the distribution of the
forecasts and helps with visualization of the sharpness, i.e.,
tendency of the predictions to lie at the extremes of the 0—1
distribution, and is equal to the variance of the predictions.

The calibration curve indicates that the model is miscali-
brated at lower confidence levels, displaying overconfidence
around a predicted probability of 0.25, where actual out-
comes are significantly lower. This miscalibration can lead to
unreliable predictions in critical risk assessment scenarios. In
contrast, at high predicted probabilities (e.g., 1.0), the model
demonstrates strong calibration, with observed outcomes

Table 8 Performance metrics of conformal inference on Trust-Hub
chip-level Trojan dataset

sig mean_err avg_c n_correct mean_T-EV
0.05 0.049 1.040 589 0.012
0.1 0.102 0.941 556 0.045
0.2 0.204 0.812 493 0.133
0.3 0.303 0.701 431 0.220
0.4 0.406 0.596 367 0.319
0.5 0.504 0.497 307 0.423
0.6 0.604 0.397 245 0.536
0.7 0.702 0.298 184 0.650
0.8 0.798 0.202 125 0.764
0.9 0.900 0.100 61 0.884

closely matching predictions. The accompanying histogram
further illustrates that the model tends to favor extreme prob-
abilities, either very low or very high, while largely avoiding
moderate-confidence predictions. This behavior suggests a
lack of nuance in the model’s probabilistic outputs. The over-
estimation of rare events at low probabilities could lead to
false alarms, particularly in sensitive domains like hardware
security, while the reliability of high-confidence predictions
suggests that such outputs can be trusted. The scarcity of
intermediate predictions may reflect model architecture lim-
itations or a lack of sufficient ambiguous data. Furthermore,
large error bars in certain bins highlight the impact of lim-
ited sample sizes on calibration reliability, suggesting that
increasing the dataset or employing bootstrapping techniques
could enhance model performance.

The confidence calibration curve reveals both strengths
and weaknesses in the model’s probabilistic predictions.
While the model exhibits strong reliability at high-confidence
levels, it struggles with overconfidence in lower probability

Table 9 Adoption of confidence for risk-aware ranking on Trust-Hub
chip-level Trojan dataset

confidence credibility y_pred
1 0.997 0.319 TF
2 0.994 0.242 TF
3 0.922 0.162 TF
4 0.886 0.119 T-EV
5 1 0.645 TF
6 0.999 0.97 T-EV
7 0.998 0.301 TF

@ Springer

Journal of Hardware and Systems Security

Trojan Free
NOT Trojan Free
Maxbranchbit > 1.52

Trojan Free NOT Trojan Infected

Ncon <= 1.00

0.17

Minbranchbit <= 1.00

0.17

0.98 < Branchbit <= 1.00
0.11

ICONDI <= 1.00

Fig. 11 Calibrated explanation for reject

ranges and avoids making moderate-confidence predictions.
To address these limitations, post-hoc calibration techniques
such as temperature scaling, Platt scaling, or isotonic regres-
sion could be applied to improve the model’s calibration,
particularly in the low-to-mid probability ranges. Improving
calibration is critical for ensuring the model’s outputs can be
trusted in real-world applications, especially those involv-
ing high-stakes decision-making. A well-calibrated model
enhances predictive accuracy and provides more reliable con-
fidence estimates, which are essential for risk-sensitive tasks.

Trojan Infected

roje C
Maxbranchbit > 1.52

Minbranchbit <= 1.00
[Wo.10

Evolved Trojan

Infecte NOT Evolved Trojan Evolved Trojan

6.2.3 ROC-AUC Curve

The Receiver Operating Characteristic (ROC) curve illus-
trates the balance between sensitivity and specificity in a
model. It provides a visual representation of how these two
metrics change as the threshold for classifying a condition
varies. The Area Under the Curve (AUC), on the other hand,
quantifies the likelihood that a randomly chosen pair of cir-
cuits, one with the Trojan and one without, will be accurately

Table 10 Hyperparameters for

multimodal learning model Category

Parameter

Value

Data Splitting Parameters

Graph Data (Conv Layers)

Tabular Data (Dense Layers)

Fusion Layer

Training Hyperparameters

Evaluation Metrics

Test Size

Random State

Filters

Kernel Size
Activation Function
Pooling Type

Pool Size

Neurons

Activation Function

Dense Layer Neurons

Activation Function
Dropout Rate
Output Neurons
Output Activation

Optimizer
Loss Function
Metrics
Epochs

Batch Size

Verbose

Accuracy Score
Confusion Matrix

Brier Score Loss

20% (test_size=0.2)
42

64

3

ReLU
MaxPooling1 D
2

64
ReLU

128
ReLU
0.5

1
Sigmoid

Adam

Binary Crossentropy
Accuracy

100

5

1

Calculated after training
Calculated after training

Calculated after training

@ Springer

Journal of Hardware and Systems Security

Tabular Model

JSON Model

—— Tabular Train Loss
—— Tabular Test Loss

1.2 4

1.0

0.8

Loss

0.6

0.4

0.2

Loss

e —— JSON Train Loss

0.72 4 —— JSON Test Loss

0.71 4

0.70 4

0.69

0.68

0.67 1

T T T T T
2 4 6 8 10
Epoch

Fig. 12 NOODLE’s train and test loss for tabular and graph dataset

classified by the model. The ROC-AUC curve is given in
Fig. 15.

The white area represents the optimal zone for model per-
formance, and the lightly shaded red areas represent the zones
of acceptable efficacy. The values for ROC-AUC range from
0 to 1, where values near “1” suggest that it can effectively
discriminate between TF and TI cases with a high degree of
confidence, and if the value is near “0,” the model’s perfor-
mance is worse than random guessing. In our case, the value
is 0.928, which suggests that the model is performing well.

6.2.4 Radar Plot

The radar plot provides a visual means of presenting com-
plex, multi-dimensional data, as shown in Fig.16. When
appraising the effectiveness of a predictor, there is a tendency
to focus narrowly on a limited set of metrics. However, the
radar plot provides a method for gaining a comprehensive
understanding of performance across diverse dimensions.
In a radar chart, each variable is represented along its cor-
responding axes (some variables have been normalized to
conform to the 0-1 range of the radial axis). The model
excels in Calibration Loss (0.98), Brier Skill Score (0.96),

Table 11 NOODLE’s Brier score comparison for different modalities

Dataset Brier Score
Graph-based Data 0.1798
Tabular-based Data 0.1913
Early Fusion (Graph + Tabular) 0.1685
Late Fusion (Graph + Tabular) 0.1589

Epoch

Calib-in-the-large (0.97), Confidence Score (0.98), Speci-
ficity (0.97), and NPV (0.94), indicating reliable probability
calibration and effective identification of true negatives.
These strengths suggest the model is well-suited for the given
applications, where minimizing false positives is crucial.
However, the model shows weaker performance in Resolu-
tion (0.42), Refinement Loss (0.53), and Sensitivity (0.46),
suggesting difficulties in detecting true positives and distin-
guishing new patterns, which could limit its effectiveness in
high-stakes fields like detecting evolving hardware Trojans.
To improve, future work should focus on enhancing true pos-
itive detection through techniques like dataset rebalancing,
better feature selection, or ensemble methods, while preserv-
ing the model’s robust calibration.

In the given radar plot, we have metrics related to dis-
crimination, which include AUC, resolution, and refinement
loss. Following these are combined metrics assessing both
calibration and discrimination, namely the Brier score and
Brier skill score. As shown in the figure, the model is less
sensitive and has high accuracy. This implies that while the
model is generally accurate in its predictions, it may not be
as effective in identifying all the actual TI cases. This could
be due to a higher number of false negatives, which means
the model is missing some of the positive cases.

7 Conclusion

In this paper, we made significant strides in the field of
hardware Trojan detection by introducing uncertainty-aware
unimodal and multimodal learning. The introduction of guar-
anteed coverage for prediction sets, facilitated by a tunable
significance level through conformal prediction, enhances

@ Springer

Journal of Hardware and Systems Security

(a) Brier Score Distribution with Mean Interval - Early Fusion

100 -

80

Frequency
o
o
|

40

204 T

0 yl_l_‘_' , g T ? T ! g

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
Brier Score

Fig. 13 NOODLE’s Brier score. a Early fusion and b late fusion

the robustness of hardware Trojan detection. Moreover, our
algorithm-agnostic reject prediction mechanism, coupled
with explainability-aware features, provides a valuable tool
for human intervention in cases of model uncertainty regard-
ing evolving Trojan identification. The proposed ranking
mechanism, validated on both synthetic and real chip-
level benchmarks, contributes to the interpretability and

Confidence Calibration Curve

8 6 1 3 6

predictions Observed probability of event

0.00 0.25 0.50 0.75 1.00

Predicted chance of event

Fig. 14 NOODLE’s confidence calibration curve

@ Springer

(b) Brier Score Distribution with Mean Interval - Late Fusion

100 _

80 - i

60 —

Frequency

40 A

20 A

T r T T 1 7
0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26
Brier Score

confidence assessment of evolved Trojans. In addition, our
assessment addresses both early and late fusion strategies,
offering a comprehensive evaluation of the approach’s effi-
cacy and also handling missing modalities using GAN. By
addressing these pivotal aspects, our work not only pushes
the boundaries of hardware Trojan detection but also sets
a foundation for more reliable and nuanced approaches to
safeguarding hardware systems against evolving threats.
Our results highlighted opportunities for researchers in
related hardware security domains such as logic locking [71-
74] to rethink the application of ML-based solutions and re-
construct the metrics to evaluate their methods. We do believe

ROC Curve
1.0 A
0.8 -
iy
o+
0
$ 0.4
(9p]
AUC=0.928
0.2 -
0.0 A
0.00 0.25 0.50 0.75 1.00
1-Specificity

Fig. 15 NOODLE’s ROC-AUC curve under late fusion

Journal of Hardware and Systems Security

Calibration loss

Calib-in-the-large Brier skill score

Briwg score loss

NPV gsolution

PPV Sensitivity

Fig. 16 NOODLE’s radar plot for consolidated metrics

that there is no silver bullet for a zero-day attack, but a robust
method to minimize the chances of an attack and a proactive
approach to defending the attack do help.

Statements and Declarations

Funding This work is supported by the National Science Foundation
under Award No. 2245247.

Competing Interests The authors declare no competing interests.
Author Contributions R. V. and A. R. contributed equally to this work.

Data Availability No datasets were generated or analyzed during the
current study.

Ethical Approval This declaration is “not applicable.”

References

1. FrancqJ, Frick F (2015) Introduction to hardware trojan detection
methods. In: 2015 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE). IEEE, pp 770-775

2. Gbade-Alabi A, Keezer D, Mooney V, Poschmann AY, Stottinger
M, Divekar K (2014) A signature based architecture for trojan
detection. In: Proceedings of the 9th workshop on embedded sys-
tems security, pp 1-10

3. Ceschin F(2023) Spotting the differences: quirks of machine learn-
ing (in) security. USENIX Association, Santa Clara, CA

4. Quiring E, Pendlebury F, Warnecke A, Pierazzi F, Wressnegger
C, Cavallaro L, Rieck K (2022) Dos and don’ts of machine learn-
ing in computer security. In: 31st USENIX Security Symposium
(USENIX Security 22), USENIX Association, Boston, MA

5. Liu W, Chang C-H, Wang X, Liu C, Fung JM, Ebrahimabadi M,
Karimi N, Meng X, Basu K (2021) Two sides of the same coin:
boons and banes of machine learning in hardware security. IEEE J
Emerg Sel Top Circuits Syst 11(2):228-251

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Shafer G, Vovk V (2008) A tutorial on conformal prediction. J

Mach Learn Res 9(3)

. Tibshirani RJ, Foygel Barber R, Candes E, Ramdas A (2019) Con-

formal prediction under covariate shift. Adv Neural Inf Process
Syst 32

. Krieg C (2023) Reflections on trusting trusthub. In: 2023

IEEE/ACM International Conference on Computer Aided Design
(ICCAD). IEEE, pp 1-9

. White A (2023) By 2024, 60% of the data used for the development

of Al and analytics projects will be synthetically generated. https://
blogs.gartner.com/andrew_white/2021/07/24/

Nassif J, Tekli J, Kamradt M (2024) Synthetic data: revolutionizing
the industrial metaverse. Springer, ???

Yu S-Y, Yasaei R, Zhou Q, Nguyen T, Faruque MAA (2021)
Hw?2vec: a graph learning tool for automating hardware security.
arXiv preprint arXiv:2107.12328

Salmani H, Tehranipoor M, Sutikno S, Wijitrisnanto F (2023)
Trust-Hub Trojan benchmark for hardware Trojan detection model
creation using machine learning. https://dx.doi.org/10.21227/
px6s-sm21

Huang Z, Wang Q, Chen Y, Jiang X (2020) A survey on machine
learning against hardware trojan attacks: recent advances and chal-
lenges. IEEE Access 8:10796-10826

Gubbi KI, Latibari BS, Srikanth A, Sheaves T, Beheshti-Shirazi
SA, Pd SM, Rafatirad S, Sasan A, Homayoun H, Salehi S (2023)
Hardware Trojan detection using machine learning: a tutorial. ACM
Trans Embed Comput Syst

Koylii TC, Reinbrecht CRW, Gebregiorgis A, Hamdioui S, Taouil
M (2023) A survey on machine learning in hardware security. ACM
J Emerg Technol Comput Syst

Kundu S, Meng X, Basu K (2021) Application of machine learning
in hardware Trojan detection. In: 2021 22nd International Sympo-
sium on Quality Electronic Design (ISQED). IEEE, pp 414-419
Botero UJ, Wilson R, Lu H, Rahman MT, Mallaiyan MA, Ganji F,
Asadizanjani N, Tehranipoor MM, Woodard DL, Forte D (2021)
Hardware trust and assurance through reverse engineering: a
tutorial and outlook from image analysis and machine learning per-
spectives. ACM J Emerg Technol Comput Syst JETC) 17(4):1-53
Ashok M, Turner MJ, Walsworth RL, Levine EV, Chandrakasan AP
(2022) Hardware trojan detection using unsupervised deep learning
on quantum diamond microscope magnetic field images. ACM J
Emerg Technol Comput Syst (JETC) 18(4):1-25

Bowman DC, Emmert JM (2022) Hardware Trojan detection
through multimodal image processing and analysis. In: 2022 IEEE
International Symposium on Smart Electronic Systems (iSES), pp
712-717

Bao C, Forte D, Srivastava A (2014) On application of one-class
SVM to reverse engineering-based hardware Trojan detection. In:
Fifteenth international symposium on quality electronic design.
IEEE, pp 47-54

Hasegawa K, Yanagisawa M, Togawa N (2017) A hardware-Trojan
classification method using machine learning at gate-level netlists
based on trojan features. IEICE Trans Fundam Electron Commun
Comput Sci 100(7):1427-1438

Dong C, Chen J, Guo W, Zou J (2019) A machine-learning-based
hardware-Trojan detection approach for chips in the internet of
things. Int J Distrib Sens Netw 15(12):1550147719888098
Hasegawa K, Yanagisawa M, Togawa N (2017) Trojan-feature
extraction at gate-level netlists and its application to hardware-
Trojan detection using random forest classifier. In: 2017 IEEE
International Symposium on Circuits and Systems (ISCAS). IEEE,
pp 1-4

Gohil V, Guo H, Patnaik S, Rajendran J (2022) Attrition: attacking
static hardware Trojan detection techniques using reinforcement
learning. In: Proceedings of the 2022 ACM SIGSAC conference
on computer and communications security, pp 1275-1289

@ Springer

https://blogs.gartner.com/andrew_white/2021/07/24/
https://blogs.gartner.com/andrew_white/2021/07/24/
http://arxiv.org/abs/2107.12328
https://dx.doi.org/10.21227/px6s-sm21
https://dx.doi.org/10.21227/px6s-sm21

Journal of Hardware and Systems Security

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Chen H, Zhang X, Huang K, Koushanfar F (2023) Adatest: rein-
forcement learning and adaptive sampling for on-chip hardware
Trojan detection. ACM Trans Embed Comput Syst 22(2):1-23
Alrahis L, Patnaik S, Shafique M, Sinanoglu O (2022) Embracing
graph neural networks for hardware security. In: Proceedings of
the 41st IEEE/ACM international conference on computer-aided
design, pp 1-9

Hepp A, Baehr J, Sigl G (2022) Golden model-free hardware Tro-
jan detection by classification of netlist module graphs. In: 2022
Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, pp 1317-1322

Han T, Wang Y, Liu P (2019) Hardware Trojans detection at register
transfer level based on machine learning. In: 2019 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS). IEEE, pp
1-5

Aghamohammadi Y, Rezaei A (2024) Lipstick: corruptibility-
aware and explainable graph neural network-based oracle-less
attack on logic locking. In: 29th Asia and South Pacific Design
Automation Conference (ASP-DAC), pp 606-611

Yang L, Guo W, Hao Q, Ciptadi A, Ahmadzadeh A, Xing X, Wang
G (2021) Cade: detecting and explaining concept drift samples for
security applications. In: USENIX security symposium, pp 2327—
2344

Pan Z, Mishra P (2023) Hardware Trojan detection using Shapley
ensemble boosting. In: Proceedings of the 28th Asia and South
Pacific design automation conference, pp 496-503

Downing E, Mirsky Y, Park K, Lee W (2021) Deepreflect: dis-
covering malicious functionality through binary reconstruction. In:
USENIX security symposium, pp 3469-3486

Severi G, Meyer J, Coull SE, Oprea A (2021) Explanation-
guided backdoor poisoning attacks against malware classifiers. In:
USENIX security symposium, pp 1487-1504

Singh P, Srivastava R, Rana K, Kumar V (2021) A multimodal
hierarchical approach to speech emotion recognition from audio
and text. Knowl-Based Syst 229:107316

Ektefaie Y, Dasoulas G, Noori A, Farhat M, Zitnik M (2023) Mul-
timodal learning with graphs. Nat Mach Intell 5(4):340-350
Nyiri T, Kiss A (2023) What can we learn from small data. Info-
communications J, Special Issue on Appl Inf, 27-34

Xu P, Ji X, Li M, Lu W (2023) Small data machine learning in
materials science. npj Comput Mater 9(1):42

Ghamisi A, Charter T, Ji L, Rivard M, Lund G, Najjaran H (2023)
Anomaly detection in automated fibre placement: learning with
data limitations. ArXiv preprint ArXiv:2307.07893

Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY (2011) Multi-
modal deep learning. In: Proceedings International Conference on
Machine Learning (ICML), pp 689-696

Trong VH, Gwang-hyun Y, Vu DT, Jin-young K (2020) Late fusion
of multimodal deep neural networks for weeds classification. Com-
put Electron Agric 175:105506

Nguyen TM, Nguyen T, Le TM, Tran T (2021) Gefa: early fusion
approach in drug-target affinity prediction. [IEEE/ACM Trans Com-
put Biol Bioinf 19(2):718-728

Ovadia Y, Fertig E, Ren J, Nado Z, Sculley D, Nowozin S, Dillon J,
Lakshminarayanan B, Snoek J (2019) Can you trust your model’s
uncertainty? Evaluating predictive uncertainty under dataset shift.
Adv Neural Inf Process Syst 32

Lofstrom T, Bostrom H, Linusson H, Johansson U (2015) Bias
reduction through conditional conformal prediction. Intell Data
Anal 19(6):1355-1375

Bostrom H, Johansson U, Lofstrom T (2021) Mondrian conformal
predictive distributions. In: Conformal and probabilistic prediction
and applications. PMLR, pp 24-38

Angelopoulos AN, Bates S (2023) Conformal prediction: a gentle
introduction. Found Trends® Mach Learn 16(4):494-591

@ Springer

46.

47.

48.

49.
50.
51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Laland K, Uller T, Feldman M, Sterelny K, Miiller GB, Moczek A,
Jablonka E, Odling-Smee J, Wray GA, Hoekstra HE et al (2014)
Does evolutionary theory need a rethink? Nature 514(7521):161—
164

Liu B, Vishwakarma R (2022) Anomaly aware log retrieval
from disk array enclosures (DAEs). Google Patents. US Patent
11,513,931

Wilde H, Knight V, Gillard J (2020) Evolutionary dataset optimi-
sation: learning algorithm quality through evolution. Appl Intell
50:1172-1191

Catto E (2010) Box2d. Available from: http://www.box2d.org
Holland JH (1992) Genetic algorithms. Sci Am 267(1):66-73
Sisejkovic D, Merchant F, Reimann LM, Srivastava H, Hallawa
A, Leupers R (2021) Challenging the security of logic locking
schemes in the era of deep learning: a neuroevolutionary approach.
ACM J Emerg Technol Comput Syst (JETC) 17(3):1-26
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley
D, Ozair S, Courville A, Bengio Y (2020) Generative adversarial
networks. Commun ACM 63(11):139-144

Ojha U, Li Y, Lee YJ (2023) Towards universal fake image
detectors that generalize across generative models. arXiv preprint
arXiv:2302.10174

Kang M, Zhu J-Y, Zhang R, Park J, Shechtman E, Paris S, Park T
(2023) Scaling up GAN:Ss for text-to-image synthesis. arXiv preprint
arXiv:2303.05511

Xu L, Skoularidou M, Cuesta-Infante A, Veeramachaneni K (2019)
Modeling tabular data using conditional GAN. Adv Neural Inf Pro-
cess Syst 32

Ashrapov I (2020) Tabular GANs for uneven distribution. arXiv
preprint arXiv:2010.00638

Lederrey G, Hillel T, Bierlaire M (2022) DATGAN: integrating
expert knowledge into deep learning for synthetic tabular data.
arXiv preprint arXiv:2203.03489

Zhao Z, Wu H, Van Moorsel A, Chen LY (2023) GTV: gener-
ating tabular data via vertical federated learning. arXiv preprint
arXiv:2302.01706

Yonetani R, Takahashi T, Hashimoto A, Ushiku Y (2019) Decen-
tralized learning of generative adversarial networks from non-iid
data. arXiv preprint arXiv:1905.09684

Etemadi N (1981) An elementary proof of the strong law of large
numbers. Zeitschrift fiir Wahrscheinlichkeitstheorie und verwandte
Gebiete 55(1):119-122

Smythe RT (1973) Strong laws of large numbers for r-dimensional
arrays of random variables. Ann Probab, 164—170

Vashistha N, Lu H, Shi Q, Rahman MT, Shen H, Woodard DL,
Asadizanjani N, Tehranipoor M (2018) Trojan scanner: detecting
hardware trojans with rapid SEM imaging combined with image
processing and machine learning. In: ISTFA 2018: Proceedings
from the 44th international symposium for testing and failure anal-
ysis. ASM International, p 256

Shi Q, Vashistha N, Lu H, Shen H, Tehranipoor B, Woodard DL,
Asadizanjani N (2019) Golden gates: a new hybrid approach for
rapid hardware trojan detection using testing and imaging. In: 2019
IEEE international symposium on Hardware Oriented Security and
Trust (HOST). IEEE, pp 61-71

Liakos KG, Georgakilas GK, Plessas FC, Kitsos P (2022) Gaine-
sis: generative artificial intelligence netlists synthesis. Electronics
11(2):245

Sankaranarayanan S, Angelopoulos AN, Bates S, Romano Y, Isola
P (2022) Semantic uncertainty intervals for disentangled latent
spaces

Jaques N, Taylor S, Sano A, Picard R (2017) Multimodal autoen-
coder: a deep learning approach to filling in missing sensor data
and enabling better mood prediction. In: IEEE International Con-
ference on Affective Computing and Intelligent Interaction (ACII),
pp 202-208

http://arxiv.org/abs/2307.07893
http://www.box2d.org
http://arxiv.org/abs/2302.10174
http://arxiv.org/abs/2303.05511
http://arxiv.org/abs/2010.00638
http://arxiv.org/abs/2203.03489
http://arxiv.org/abs/2302.01706
http://arxiv.org/abs/1905.09684

Journal of Hardware and Systems Security

67.

68.

69.

70.

71.

72.

73.

Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B,
Bharath AA (2018) Generative adversarial networks: an overview.
IEEE Signal Process Mag 35(1):53-65

Bates S, Angelopoulos A, Lei L, Malik J, Jordan M (2021)
Distribution-free, risk-controlling prediction sets.] ACM (JACM)
68(6):1-34

Dieber J, Kirrane S (2020) Why model why? Assessing the
strengths and limitations of lime. arXiv preprint arXiv:2012.00093
Gallo I, Calefati A, Nawaz S (2017) Multimodal classification
fusion in real-world scenarios. In: IAPR International Conference
on Document Analysis and Recognition (ICDAR), vol 5, pp 3641
Rezaei A, Afsharmazayejani R, Maynard J (2022) Evaluating the
security of eFPGA-based redaction algorithms. In: IEEE/ACM
International Conference on Computer-Aided Design (ICCAD)
Rezaei A, Hedayatipour A, Sayadi H, Aliasgari M, Zhou H (2022)
Global attack and remedy on IC-specific logic encryption. In: IEEE
international symposium on Hardware Oriented Security and Trust
(HOST), pp 145-148

Maynard J, Rezaei A (2023) DK lock: dual key logic locking
against oracle-guided attacks. In: International Symposium on
Quality Electronic Design (ISQED), pp 1-7

74.

75.

76.

Aghamohammadi Y, Rezaei A (2023) Cola: convolutional neural
network model for secure low overhead logic locking assign-
ment. In: Proceedings of the Great Lakes Symposium on VLSI
(GLSVLSI), pp 339-344

Vishwakarma R, Rezaei A (2023) Risk-aware and explainable
framework for ensuring guaranteed coverage in evolving hardware
trojan detection. In: 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pp 1-9

Vishwakarma R, Rezaei A (2024) Uncertainty-aware hardware tro-
jan detection using multimodal deep learning. In: 2024 Design,
Automation & Test in Europe Conference & Exhibition (DATE),

pp 1-6

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

@ Springer

http://arxiv.org/abs/2012.00093

	Uncertainty-Aware Unimodal and Multimodal Learning for Evolving Hardware Trojan Detection
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Related Works and Preliminaries
	2.1 Multimodal Learning
	2.2 Calibrated Prediction
	2.3 Conformal Prediction
	2.3.1 Time Complexity Analysis

	2.4 Guaranteed Coverage of Prediction

	3 Notion of Evolution and Hardware Trojans
	3.1 Genetic Algorithm
	3.2 Generative Adversarial Network
	3.2.1 Highly Imbalanced Data
	3.2.2 Non-IID Case for Law of Large Number
	3.2.3 Risk Sensitive Application

	4 Unimodal Hardware Trojan Detection
	5 Multimodal Hardware Trojan Detection
	5.1 Time Complexity Analysis

	6 Experimental Results
	6.1 Unimodal Approach Experiments
	6.1.1 Baseline Model
	6.1.2 Conformal Inference
	6.1.3 Performance Metrics
	6.1.4 Risk-Aware Ranking
	6.1.5 Calibrated Explanations for Reject

	6.2 Multimodal Approach Experiments
	6.2.1 Brier Score
	6.2.2 Confidence Calibration Curve
	6.2.3 ROC-AUC Curve
	6.2.4 Radar Plot

	7 Conclusion
	References

