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Abstract—With the rise of fabless manufacturing, the risks
of piracy and overproduction in integrated circuits have be-
come more pressing, making it crucial to analyze and prevent
hardware-based attacks. Although existing machine learning
oracle-less attacks on logic-locked circuits are able to report
approximate keys, they often struggle to produce operationally
effective keys because they focus mainly on the structural
topology of the circuits. This paper addresses this limitation
by incorporating both functional features, such as output cor-
ruptibility, and behavioral features, like power consumption
and area overhead, into graph neural network-based circuit
modeling attacks. With the help of both subgraph-level and
graph-level attack strategies, we achieve notable improvements
in rendering a meaningful key compared to existing oracle-
less methods. In addition, our graph-level model is explainable,
providing insights into the learning process and how the attack
is executed. These findings are critical for chip design houses
looking to identify and address security vulnerabilities, ultimately
safeguarding hardware intellectual property.

Index Terms—Logic Locking; Logic Encryption; Machine
Learning; Graph Neural Networks; Explainability

I. INTRODUCTION

As outsourcing manufacturing becomes the norm in the
semiconductor industry, it raises critical concerns including
hardware Intellectual Property (IP) theft and overproduction.
Logic locking (also referred to as logic encryption or obfus-
cation) [1]-[15] helps mitigate these threats by incorporating
key-controlled gates into circuit designs. Only the correct
key—known exclusively to the designer—produces the proper
output, while any incorrect key corrupts the output, thus
protecting against unauthorized use.

One significant threat model is the Oracle-Guided (OG)
attack [16]-[26], which relies on having both an activated
Integrated Circuit (IC) and a logic-locked netlist—often leaked
from untrusted foundries—to systematically eliminate incor-
rect keys using SAT solvers. But new Oracle-Less (OL) attacks
are even more dangerous because they only need the locked
netlist. This shows how vulnerable hardware IPs are in settings
with limited resources and makes it even more important to
have strong defenses.

Recent advances in Machine Learning (ML) have paved the
way for more sophisticated OL attacks that use predictive
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models to infer circuit keys [27]-[33]. Graph Neural Net-
works (GNNs) are especially effective because circuits can
be represented as graphs, where nodes correspond to gates
and edges denote their connections. By learning relationships
within these graph structures, GNNs excel at extracting pat-
terns crucial for circuit unlocking [34]. While ML-based OL
attacks often achieve high prediction accuracy—measured by
minimizing the Hamming distance between the predicted and
correct keys—they lack interpretability, making it difficult to
understand why certain key predictions succeed or fail. This
limitation complicates the development of effective counter-
measures.

This paper introduces GALA, a functionality-oriented and
behaviorally-guided OL attack that leverages GNNs to predict
keys for logic-locked circuits. Unlike previous approaches, it
factors in circuit functionality metrics—such as area and power
consumption—to improve both explainability and efficacy. By
addressing shortcomings in existing attacks, our methodology
offers a fresh perspective on protecting hardware IP.

II. PRELIMINARIES

This section reviews logic locking methods and ML-based
OL attacks, identifies gaps in attacker strategies, and outlines
our contributions to bridge these gaps.

A. Background

In XOR-based logic locking [1], key-bits are used in com-
bination with random inverters and buffers. Key-bit-controlled
XOR gates replace selected buffers and inverters, where an
XOR gate hiding a buffer corresponds to a key-bit of “0,” and
an XOR gate hiding an inverter corresponds to a key-bit of
“1.” MuX-based logic locking [2] employs 2-to-1 MUXs to
replace random signals. In this approach, MUX inputs consist
of real signals and random dummy signals, while the selectors
act as key-bits. The correct key must choose the real signal
terminal over the dummy one. While traditional logic locking
methods have been vulnerable to SAT-based OG attack [16],
post-SAT locking schemes such as SAR-Lock [4] and Anti-
SAT [5] have been introduced to significantly increase the
number of input patterns required to eliminate incorrect keys



through SAT-based OG attacks. As a more advanced post-
SAT method, Bilateral Logic Encryption (BLE) [6] applies
obfuscation and integrated locking specifically to a sensitive
component of the circuit which reduces performance overhead
compared to locking the entire circuit.

Recent studies have demonstrated progress in ML-based OL
attacks. UNTANGLE [31] formulates the key-extraction task
as a link prediction problem and leverages a GNN to learn the
composition of gates in the locked netlist. In addition, OMLA
[32] classifies subgraphs to resolve key-bit values, extracting
small subgraphs for each key-gate that represent these values.
Finally, LIPSTICK [33] is a type of OL attack that utilizes
GNNss to predict the correct keys for logic-locked circuits by
iteratively refining its predictions through learning from the
structure and behavior of the circuit.

One of the main drawbacks of ML models is their lack of
interpretability. This limitation can be addressed by developing
post-hoc explanation methods for predictions, which has given
rise to the field of explainability [35]. To achieve accurate
similarity estimations and discriminative feature representa-
tions, SGGNN [36] employs graph computation during both
the training and testing phases of deep networks. Additionally,
PGExplainer [37] utilizes a trained GNN model to provide co-
herent justifications for the predictions. Notably, PGExplainer
can operate in an inductive scenario, inferring explanations for
ambiguous nodes without requiring retraining of the explana-
tion model.

B. Research Gaps

a The initial observation from state-of-the-art works is
that ML-based OL attacks are fundamentally approximate, as
they strive to identify a nearly accurate key by optimizing
specific parameters, like reducing the Hamming distance be-
tween the actual key and the one predicted by the attack. So,
the ultimate goal in these attacks is to report a key as close
as possible to the correct key based on a defined parameter.
This is justifiable because, unlike OG attacks which require
access to an oracle to recover the exact key, OL attacks operate
under a weaker threat model, relying solely on access to a
locked netlist without requiring an activated IC. However, a
key question remains: what advantage does an attacker gain
from recovering an approximate key? We address this question
in detail in Section III.

g Key Prediction Accuracy (KPA) which is initially used
in [27], is a metric defined as the percentage of key bits
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Fig. 1: Counterexample for using KPA as a meaningful re-
ported key accuracy metric

accurately predicted for a given netlist, with each key bit
being predicted independently. KPA has been widely used in
research to evaluate the accuracy of recovered keys—and even
adopted in cybersecurity competitions like the CSAW Logic
Locking Conquest to rank participants—a high KPA does not
necessarily imply that the locked circuit will function correctly
or provide any practical advantage to the attacker. For instance,
as it is illustrated in Fig. 1, if we add one extra key bit and
XOR it with one of the outputs, there will be an approximate
key with a very high KPA (i.e., only the newly introduced key
bit is different from the correct key), but it has 100% output
corruptibility if inserted into the locked circuit. This example
highlights the fact that a useful key precision metric should go
beyond the structure of the circuits. A recent study [33] has
explored the effect of incorporating key Error Rate (ER) as a
functionality feature into circuit labels to predict more accurate
keys. However, similar to other OL attacks [27]-[32] it still
falls short in considering the overall behavior of the circuit,
including power consumption and area overhead, under the
reported key.

9 Additionally, in state-of-the-art works, a comprehen-
sive security assessment of logic locking techniques is often
neglected. Without insight into how a model arrives at its pre-
dictions—such as which features or circuit structures influence
key recovery—designers and security analysts are left with a
“black box” that offers little actionable feedback. This lack of
transparency hinders the ability to validate the attack’s effec-
tiveness, understand its limitations, or improve the resilience
of locking schemes. Moreover, it reduces trust in the results,
especially in high-stakes environments where decisions about
IP protection must be based on verifiable evidence. Thus, it is
essential to consider explainable ML models [38] to provide
more reliable and trustworthy predictions for IC design houses
and decision makers.

C. Contributions

In this paper, we address the following two questions
motivated by the identified research gaps in Section II-B.

First, what other circuit functionality features, besides
key ER, can we integrate into the GNN attack to improve
key prediction accuracy while preserving the integrity
of the feature learning process? This question arises from
the observation that relying solely on Hamming distance as
a performance metric is inherently limited. While Hamming
distance measures the bitwise difference between the predicted
and actual keys, it does not capture the functional correctness
of the recovered key or its impact on the circuit’s behavior.
We aim to assess the effectiveness of GNN attacks and which
parameters or set of parameters are meaningful in this context.
Thus, we will first explore why existing OL attacks struggle to
report an approximate key with high precision, despite having
high ML model accuracy, and to address this issue, we will
introduce the incorporation of circuit behavioral features such
as power consumption and area overhead into the learning
process of both a subgraph-level attack [32] and a graph-level



attack [33], comparing the precision of the newly reported
keys.

Second, what features does the GNN model learn when
only structural analysis is involved, and to what extent
does each feature contribute to the model’s inference?
Without explainability, it remains unclear which structural
features are most influential in guiding the model’s predictions.
For instance, does the model focus more on nodes with
high centrality, specific subgraph motifs, or particular gate
combinations? And how do these features correlate with the
likelihood of a node being part of the key logic? An explain-
able ML model would answer this question. Thus, we will
employ an explainable GNN that utilizes techniques such as
rule extraction and explainable reasoning [39]. This will help
us understand data behavior and identify relationships between
nodes, edges, and node features, as well as visualize the hidden
representations learned by the GNN. By examining these
relationships, we can uncover crucial patterns and topologies
that are effective in determining key-bit values.

III. PREPARE FOR GALA'!

In this section, we propose GALA which is an explainable
GNN-based Approach for enhancing oracle-less Logic locking
Attacks using functional and behavioral features.

A. Problem Statement

Let’s first formally define the logic locking problem. Con-
sidering n, m, and p be the sizes of the input, output,
and key, respectively, we define the original circuit as F :
{0,1}" — {0,1}" and the locked circuit as G : {0,1}" x
{0,1}" — {0,1}"™ in which there is a p-bit correct key K* =
(kg k5, s 1) + {0, 1}” such that F(X) = G(X, K*). The
goal of the OL attack is to find an approximate key K ~ K*,
where the quality of approximation can be evaluated using
well-defined quantitative metrics.

B. Claims

While KPA is defined in Section II-B, we expand on Key
Precision Rate (KPR) to illustrate how it extends the concept
of circuit “corruptibility” (widely studied in previous works)
into a measurable metric for evaluating the functional fidelity
of an approximate key. KPR measures the fraction of input
patterns or operational conditions under which a logic-locked
circuit, running on a given approximate key K¢, replicates
the original circuit’s functional behavior. In other words, KPA
tracks correctness at the bit level, whereas KPR focuses on the
actual usability of K for reproducing intended circuit outputs.
To clarify our methodology for KPR, we adopt the following
approach:

Input Pattern Sampling: For smaller circuits, we can
exhaustively test all input vectors. For larger circuits, we
sample a statistically significant set of input patterns.

Functional Comparison: We measure the fraction of cor-
rect outputs relative to the original circuit’s outputs, averaged
over all tested inputs. In experiments where we report just
the “KPR increase” (e.g., relative gains over a baseline), we

still compute KPR in this manner but focus on changes in
functional fidelity over multiple runs.

Aggregate Statistics: We report average KPR for each
circuit across multiple runs to smooth out anomalies. When
partial results are given, they reflect incremental improvements
or comparisons to highlight the efficacy of different attacks.

Our analysis leads to the following observations:

1) High KPA Does Not Guarantee Functional Accuracy:
Although existing GNN-based attacks may achieve high
KPA, they may fail to produce a functionally accurate
key K*“. This discrepancy arises because correctly pre-
dicting a subset of key bits does not necessarily translate
to an overall correct circuit response. Recent findings
[33], [40] empirically show that high KPA does not
guarantee functional equivalence (i.e., high KPR).

2) High KPR Does Not Depend Solely on KPA: An
approximate key K“ may still exhibit a high KPR
despite having several key bits predicted incorrectly.
Functional behavior hinges on how sensitive the circuit
is to certain key locations. Consequently, a high KPA can
be sufficient but not necessary for high KPR—and vice
versa. Even if KPR is high but remains below 100%,
it may not yield a fully usable circuit for an attacker;
partial functional correctness does not automatically
translate into a reproducible or marketable IP clone.

Figures such as Fig. 1 illustrate cases where an approximate
key with high KPA yields a lower-than-expected KPR. While
formal proofs for these observations lie beyond this paper’s
scope, our empirical data (and prior examples in [33], [40])
confirm that a dual-metric approach encompassing both KPA
and KPR is crucial for accurately assessing ML-based logic-
locking attacks. These findings highlight that properly mea-
sured KPR can offer a more nuanced perspective on “usability”
than KPA alone; however, it does not guarantee a circuit is
fit for an attacker’s use unless it is near or at 100%. By
acknowledging the advantages and constraints of both metrics,
we aim to shed light on the complexities of evaluating logic-
locking attacks.

C. Attack

Consider an undirected graph G = (V, E, X, A) where V
represents the vertices, E shows the edges, X represents the
feature vectors of the vertices, and A is the adjacency matrix of
the graph. GNNs process this graph data, using the connections
and node information to make predictions about individual
nodes, connections, or the entire graph. GNNs achieve this by
repeatedly refining the representation of each node based on
its neighbors.

a,V = AGGREGATE®D (h,'""V :ue Nw) 1)
hy) = COMBINE® (h,'=Y 4,®) 2)
hg = READOUT ({h,"|v € G}) 3)

Equations 1 and 2 show the calculations behind the I-
th layer of a GNN where hg,l) represents the representation



of node v at the [-th layer and N(v) represents the set of
nodes adjacent to v. The choice of GNN method defines
which aggregate and combine functions to use. In addition, for
subgraph-level or graph-level classification, readout function
in Equation 3 gives the entire graph representation through
aggregation of node information in the final layer L.

Existing GNN-based attacks use the Graph Isomorphism
Network (GIN) architecture as their GNN which has been
shown to be as powerful as the Weisfeiler-Lehman graph
isomorphism test in distinguishing graphs [39]. It updates
node representations as shown in Equation 4 through a sum
aggregator to ensure the aggregation is injective, where MLP
represents a multi-layer perceptron. This introduces a non-
linear transformation that allows the network to learn more
complex representations of node features.

h) = MLPORI= + > wl=h)) (4)
u€N (v)

OMLA [32] represents the netlist as an undirected graph and
extracts |Vj| subgraphs using h-hop sampling, each centered
on a key-gate v € V},. The sampler constructs a subgraph G
that includes v and all nodes within h-hops, assigning one-hot
encoded feature vectors based on gate function, connectivity to
primary/key inputs, and outputs. Distance encoding captures
proximity to the central key-gate. To retain IN/OUT complex-
ities despite using undirected graphs, OMLA assigns a signed
value (-/+) to each node. An L-layer GNN then classifies
the subgraphs, predicting key-bit values. Instead of relying
solely on the final layer’s embeddings, Equation 3 concatenates
embeddings from all GIN layers (0, 1,...L) for richer graph
representation.

LIPSTICK [33] unlocks the circuits by analyzing the entire
graph structure alongside additional labels, such as the locking
mechanism used, as well as incorporating functionality fea-
tures such as ER, describing how the circuit performs under the
incorrect key (i.e., focused on KPR) rather than how close it
appears to the actual key (i.e., instead of focusing on KPA). ER
is formally defined as the number of input patterns in which
F(X) # G(X, K), divided by all input patterns. LIPSTICK
uses the same netlist-to-subgraph tool as OMLA to extract a
graph representation from the Verilog files. It utilizes the GIN
architecture along with Leaky ReLU activation to extract a
graph-level embedding with the whole key as the target label,
focusing on predicting a key with a low ER.

To build upon the foundations of OMLA and LIPSTICK,
we introduce GALA, a GNN-based attack that integrates ad-
ditional behavioral parameters—namely circuit-level area and
power consumption (covering gate-level static and dynamic
power)—into the feature maps used by these models. Although
prior ML-based attacks often rely on structural cues alone,
GALA leverages these extra circuit features to gain deeper
insight into resource utilization patterns and thus identify
potential vulnerabilities more effectively.

By incorporating the following additional features, GALA
aims to enhance both KPA and KPR.

1) Power Consumption: We compute power consumption
by combining gate-level dynamic power (derived from
typical simulation workloads) and static leakage power.
These values are aggregated for each gate or subcircuit.

2) Area Metrics: We derive area metrics from synthesized
layouts, capturing how much physical space each gate
or module occupies.

3) Graph Encoding: We normalize and encode both power
and area metrics as node (and, where relevant, edge)
attributes in the circuit’s graph representation. This en-
sures that our GNN can exploit correlations between
resource usage patterns and the functionality of locked
gates.

In practical terms, designers often tweak power and area
characteristics to hide or reveal locking configurations. By
modeling these behavioral nuances, GALA can better pinpoint
structurally significant nodes and edges that correlate with key
bits, ultimately improving the likelihood of discovering an
approximate key K® that preserves intended circuit behavior
(i.e., higher KPR).

In addition to higher KPA/KPR results, GALA offers a
degree of interpretability by highlighting the key subcircuits
or nodes most responsible for the predicted approximate
key. To ensure the reliability of predictions and enhance
interpretability, we employ the PGExplainer model [37] to
analyze the decision-making process of GALA. By mapping
predictions back to specific graph features or subgraphs, we
identify how power and area parameters contribute to the
model’s understanding of security vulnerabilities. For example,
circuits with high static power consumption or larger physical
areas exhibit distinct patterns in the explainable graphs, align-
ing with known characteristics of resource-intensive designs.
These insights underscore how GALA’s extended feature set
enables a deeper exploration of the complex interplay between
design attributes and security flaws. Overall, GALA represents
a significant advancement over OMLA and LIPSTICK by
incorporating high-level design features into the GNN frame-
work. These features not only improve the model’s predictive
performance but also provide actionable insights into the
underlying vulnerabilities, addressing critical challenges in IC
security.

IV. EXPERIMENTAL RESULTS

We implemented OMLA [32] and LIPSTICK [33] on an
Intel Core i5-1035G1 CPU, with a RAM size of 12.0 GB. We
adopt ISCAS-85 [41] benchmarks that are used in the original

TABLE I: ISCAS-85 benchmarks [41] information

Bench. | Gates | Functionality

c1355 1503 32-bit single-error corrector

c1908 1289 16-bit single-error corrector and double-error detector
c2670 1262 12-bit arithmetic logic unit and controller
¢3540 1403 8-bit arithmetic logic unit

c5315 1350 9-bit arithmetic logic unit

c6288 4703 16x16 multiplier

c7552 1241 32-bit adder and comparator
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Fig. 2: GALA vs. OMLA attacking results

references as shown in Table I locked with five logic locking
methods, including XOR-based locking [1], MUX-based lock-
ing [2], LUT-based locking [3], SAR-Lock [4], and BLE [6] all
with a 64-bit key size. We also use two additional logic locking
methods, Anti-SAT [5] and UNSAIL [8] for attack evaluation
on unseen benchmarks during training. To make the training
data for GALA, we then enhanced the locked benchmarks
with extra power consumption labels taken from Synopsys
Primetime PX that checks the switching activity to generate
gate-level static, dynamic, and total power consumption. We
also included the area overhead for each benchmark as a label.

A. GALA vs. OMLA Attack Analysis

Our testing results of OMLA and its GALA version are
presented in Fig. 2 using XOR-based locking and single
benchmark training. Using power and area information, the
GALA version is able to achieve an average KPA of 97%,
considerably higher than OMLA’s original average KPA of
89% which solely considers the structure of the circuit. The
added features allowed the model to capture more nuanced
details of circuit behavior, contributing to higher accuracy
and a more robust assessment of KPA. In addition, by just
including these data, the KPR of OMLA enhances from on
average 62% to above 85%. It means the GALA version of
OMLA is able to report a key that not only has a high KPA
(i.e., is closer to the correct key), but also has a higher KPR
(i.e., lower output corruptibility) and thus can be profitable for
the attacker.

B. GALA vs. LIPSTICK Attack Analysis

Fig. 3, in which X, M, L, S, and B refer to XOR-based, MUX-
based, LUT-based, SAR-Lock, and BLE locking schemes,
respectively, shows the KPA of the original LIPSTICK and
its GALA version on datasets consisting of single and mixed
locking on multiple benchmarks, following the same setup
described in the LIPSTICK paper. We see that the inclusion
of power and area data in GALA results in outperforming
the LIPSTICK model in all evaluated cases, totaling to a
KPA average of 91% compared to the original model’s KPR
average of 84% and a random key KPA average of 70%. Please

note that here the average KPR is on a sophisticated training
dataset and is not comparable with the KPA results in Section
IV-A that include training only xor-based locking on single
benchmarks individually.

We also evaluate the average KPR for 5, 10, and 50 random
samples of the validation dataset, which consists of locking
schemes seen during training in addition to the unseen locking
mechanisms. In this regard, we find that the inclusion of
new power and area features significantly improves model
performance. Comparing LIPSTICK and its GALA versions,
there is a KPR improvement of 14%, 17%, and 16% averaged
over all single and mixed lock schemes for 5, 10, and 50
random samples, respectively.

C. Explainability Analysis

Fig. 4 presents the explainability analysis of the bench-
mark circuit “c3540” using the OMLA and GALA models.
The underlying graph represents the circuit’s structure, with
nodes corresponding to logic gates and edges representing
the interconnections. Overlaid on this graph are color-coded
highlights that indicate the importance of specific compo-
nents as determined by the models. Key nodes and edges
are marked in red, orange, and yellow, where warmer tones
signify a higher degree of influence on the model’s predic-
tions, while less relevant regions remain in grayscale. This
visualization sheds light on the substructures most responsible
for the model’s decision-making, enabling targeted analysis
and model refinement. A significant enhancement is observed
when functionality and behavioral features are integrated into
GALA. Using PGExplainer [37], GALA identifies meaningful
substructures within the circuit, such as critical subcircuits
that exhibit distinct and influential patterns of gate connec-
tivity. For instance, subcircuits with high fan-out or fan-
in connections were consistently highlighted, which aligns
with areas of heightened attack vulnerability. In contrast,
OMLA’s structural-only approach demonstrates notable limi-
tations. The explainability analysis for OMLA reveals isolated
and fragmented subcircuits, which fail to offer actionable
insights into the circuit’s vulnerabilities. Without functional
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or behavioral context, OMLA struggles to identify patterns
indicative of successful attacks. This shortcoming underscores
the importance of integrating richer circuit features into GNN-
based attacks to enhance both their predictive power and
interpretability. Lastly, while PGExplainer has been used in
its standard form, the insights gained from its application are
non-trivial. The integration of circuit functionality features
into GALA results in explainability outputs that not only
identify vulnerabilities but also propose pathways for circuit
optimization. For example, areas highlighted as critical by
GALA often correspond to gates with specific timing and
power characteristics, which can be verified through traditional
circuit analysis methods, thus providing an additional layer of
validation for GALA’s findings.

Please note that although we provide a single illustrative
example in this paper—out of space constraints—our method-
ology applies similarly to other locked circuits: the trained
GNN assigns higher attention weights to nodes or edges that
have a strong correlation with correct key inference.

V. DISCUSSION

We demonstrated that relying solely on the structural layout
of a locked circuit is insufficient for a successful GNN-
based attack. GALA sets itself apart from existing approaches
by highlighting the importance of incorporating functional
features such as key ER and behavioral metrics such as power
consumption and area overhead to enhance both the accuracy
and interpretability of these attacks.

To mitigate ML-based OL attacks like GALA, obfuscation
techniques must evolve beyond simply hindering structural
analysis. The focus should also shift toward concealing func-
tional and behavioral characteristics. This could involve in-
corporating decoy components or introducing controlled noise
within the circuit, making it significantly harder for attackers
to extract meaningful information from the locked circuit. By
masking structural, functional, and behavioral features, IC de-
signers can create more resilient defenses against increasingly
sophisticated ML-based OL attacks. In parallel, the develop-
ment of more explainable models is essential. Explainability
allows us to uncover the underlying patterns that the ML model
leverages when guessing the key values. For designers, this
provides invaluable insights into how specific elements of the
chip architecture may contribute to weaknesses.

VI. CONCLUSION

This paper introduced GALA, a GNN-based attack for
retrieving an approximate but meaningful key of existing
logic locking methods by integrating functional and behavioral
parameters into the GNN model. By incorporating power and
area information into the GNN model, we enable a more com-
prehensive representation of the chip, leading to significantly
improved performance in key prediction tasks. The success
of this approach across multiple models demonstrates that
functional and behavioral features are critical to the GNN
model’s ability to accurately interpret key values, indicating a
generalizable trend. In addition, the integration of explainable
GNNs into this analysis opens up new opportunities for
hardware IP protection enhancement. By understanding the
specific patterns and features that make logic-locked circuits
susceptible to key recovery attacks, designers can better iden-
tify weak points in their designs. As GNNs become more
prevalent in hardware security, explainability will be key in
guiding future design and defense strategies.
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