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ABSTRACT

Hardware IP owners must envision procedures to avoid piracy and

overproduction of their designs under a fabless paradigm. A newly

proposed technique to obfuscate critical components in a logic

design is called eFPGA-based redaction, which replaces a sensitive

sub-circuit with an embedded FPGA, and the eFPGA is configured

to perform the same functionality as the missing sub-circuit. In

this case, the configuration bitstream acts as a hidden key only

known to the hardware IP owner. In this paper, we first evaluate the

security promise of the existing eFPGA-based redaction algorithms

as a preliminary study. Then, we break eFPGA-based redaction

schemes by an initial but not necessarily efficient attack named DIP

Exclusion that excludes problematic input patterns from checking

in a brute-force manner. Finally, by combining cycle breaking and

unrolling, we propose a novel and powerful attack called Break

& Unroll that is able to recover the bitstream of state-of-the-art

eFPGA-based redaction schemes in a relatively short time even

with the existence of hard cycles and large size keys. This study

reveals that the common perception that eFPGA-based redaction is

by default secure against oracle-guided attacks, is prejudice. It also

shows that additional research on how to systematically create an

exponential number of non-combinational hard cycles is required

to secure eFPGA-based redaction schemes.
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1 INTRODUCTION

Most leading-edge design houses have outsourced their fabrication

to offshore foundries for the sake of lower labor and manufacturing

costs. However, few of these foundries can be trusted due to a lack

of universal hardware Intellectual Property (IP) protection laws.

Additionally, powerful reverse engineering tools exist which can

efficiently extract and duplicate the circuit netlist [1]. Traditional
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hardware obfuscation schemes [7–9] that lock the functionality of

a logic design with the help of extra key input were found to be

vulnerable to the SAT attack [10], which can report the correct key

in a short time with the help of an activated IC. This led to the

development of several SAT-resilient obfuscation schemes [11–39]

and stronger attacks [40–56].

Field Programmable Gate Arrays (FPGAs), which are made up

of Customizable Logic Blocks (CLBs) that contain Look-Up Tables

(LUTs), Flip-Flops (FFs), and routing logic, may be programmed to

perform arbitrary functions [4]. A newly proposed technique to

obfuscate critical components in a logic design with the help of an

embedded FPGA is called eFPGA-based redaction [2–6]. Specifically,

a sensitive sub-circuit is replaced with an eFPGA, and the eFPGA

is programmed to perform the same functionality as the missing

sub-circuit. In this case, the eFPGA’s configuration bitstream acts as

a hidden key only known to the designer. By default, eFPGA fabrics

contain numerous cycles due to their flexible interconnect network,

whichmaymake the original SAT attack inapplicable [3]. So, there is

a conception that hardware redaction using eFPGAs is SAT resilient.

However, in Section 3, we refute this conception by showing that

stronger variations of the SAT attack, such as CycSAT [40] and

IcySAT [41], allow the attack to be successful in adhoc eFPGA-based

redaction schemes by introducing certain constraints to the attack

formulation. Thus, we argue that provisions are required to create

hard cycles that cannot be identified by these attacks.

After investigating the necessary assumptions to make existing

cyclic attacks [40, 41] unsuccessful on eFPGA-based redaction, we

propose two novel attacks that can recover the bitstream of the

eFPGA fabrics even with the existence of hard cycles and large size

keys. The main contributions of this paper are as follows:

• Refuting the conception that eFPGA-based redaction schemes

are by default secure against SAT attacks.

• Breaking the security of eFPGA-based redaction schemes by

a preliminary DIP Exclusion attack and an efficient Break &

Unroll attack.

• Presenting success of our attacks on finding the bitstream of

diverse eFPGA fabrics with hard cycles and large key sizes.

The same as the state-of-the-art SAT attacks [10, 40, 41, 43–45],

we assume that the attacker has full access to the obfuscated netlist.

Moreover, he/she can acquire a functioning circuit from the market

as a black box and get the correct outputs for given input vectors.

Also, since almost all ICs are sequential circuits, we assume that

the scan chain is accessible to the attacker.

2 RELATEDWORKS

Random logic obfuscation methods [7–9] are distinguished by

adding key gates to random signals in the original circuit. As fanins

of these additional gates, key inputs are introduced to the circuit.

When a wrong key is inserted, the key gates in the circuit be-

come faulty, affecting the primary outputs. In order to make the



obfuscated circuit usable, the correct key needs to be inserted in a

tamper-proof memory [7] just after the manufactured ICs return

from the foundry.

However, an attacker can acquire a functioning circuit from

the market and utilize it as a black box to get the correct outputs

for given input vectors. In addition, he/she can have access to the

netlist of the obfuscated circuit using powerful reverse engineering

tools [1] or simply from the untrusted foundry that manufactured

the IC. Then, he/she can apply the SAT attack [10] to efficiently

find out the protected secret key. The SAT attack [10] utilizes two

copies of the obfuscated circuit with the same input, but different

key values under a given constraint to check whether it is still

possible to generate different outputs. Such input patterns are called

Differentiating Input Patterns (DIPs.) Each DIP is then used to query

the functioning circuit to get the correct output. Then, the DIP with

the output is used to further constrain the keys under consideration.

After a few iterations, only the correct key will remain, and thus

be reported by the attack program.

Immediately after proposing the SAT attack, different defensive

mechanisms [11, 12] were proposed using point functions to in-

crease the required number of DIPs exponentially with the key size.

However, these techniques have two main drawbacks. First, they

have shown to be vulnerable to approximate SAT attacks [43–45]

that can return an almost correct key in which only a small number

of input combinations produce wrong outputs. Furthermore, even

their most powerful variant [13] is vulnerable to structural attacks

[47, 48] that use structural analysis to extract the original circuit

from the obfuscated one.

To address the aforementioned drawbacks, critical components

of a logic design can be mapped to an eFPGA. Commercial eFPGAs

are usually built on typical 4-1 LUTs and may include a variety

of hard macros such as integrated Digital Signal Processor (DSP)

modules and memories. In [2], an approach for extracting a piece of

a design to be mapped onto the eFPGA is described, with a limited

area and latency overhead. The authors of [3] demonstrated that

eFPGA-based redaction may be used to protect a design without

affecting the Application-Specific Integrated Circuit (ASIC) design

flows by redacting a RISC-V control route and a precision GPS

code generator. The authors of [4] gave insights into the usage of

eFPGAs for redacting Register Transfer Level (RTL) designs via a

case study of redacting various hand-crafted hierarchical RTL IPs,

where distinct modules constitute candidate units for redaction.

Finally, the authors of [6] created a bespoke tool that obfuscates a

logic design and converts it into an eFPGA device.

Although eFPGA-based redaction seems to temporarily solve the

shortcomings of existing logic obfuscation methods, it is only mean-

ingful when a small-sized sub-circuit is replaced with an eFPGA.

The same performance as the original design cannot be guaranteed

if large parts of an ASIC design are replaced with eFPGA. In Section

3, we put a spotlight on the security promise of these schemes.

3 PRELIMINARY STUDY

There is a common impression that eFPGA-based redaction [2–6]

is by default secure against oracle guided attacks [10, 40, 41] due

to the complex structure of the embedded FPGA. To evaluate the

correctness of this impression, we ran two of the existing cyclic

SAT attacks, CycSAT [40] and IcySAT [41] on the eFPGA-based

redaction benchmarks in [5] including different eFPGA fabrics

with varying complexity and bitstream sizes. Specifically, these

benchmarks have varying input sizes of LUTs (i.e., K) and different

numbers of basic logic elements in a CLB (i.e., N.) As shown in the

results from Table 1, we were able to find the bitstream of all the

28 benchmarks. The first observation is that it is a prejudice to

assume that the eFPGA-based redaction is by default secure

against the oracle-guided attacks.

CycSAT is able to recover the bitstream in significantly less time

than IcySAT. This is due to the nature of the algorithms used in

each attack. The approach of IcySAT is to unroll the circuit, making

it combinational and allowing the original SAT algorithm to better

observe the behavior of each cycle. Converting the original circuit

to an unrolled circuit is costly with respect to time, giving IcySAT

exponential run-time compared to key size and number of cycles in

the circuit. CycSAT assumes there is at least one key pattern which

creates an acyclic circuit, and the strategy is to break the cycles in

the circuit by finding key values which satisfy an acyclic condition.

This means that the algorithm searches for a key which blocks the

propagation of cyclic signals throughout the circuit, creating an

acyclic circuit without modifying the obfuscated circuit. Based on

the results from Table 1, CycSAT has a faster and more capable

Table 1: Attacks on eFPGA-based redaction benchmarks [5]

Bench Key Size IcySAT[41] CycSAT [40]

K3N2 601 155s, Correct Key 3.79s, Correct Key

K3N3 725 343s, Correct Key 5.79s, Correct Key

K3N4 837 798s, Correct Key 9.48s, Correct Key

K3N5 941 6 hours, No result 9.15s, Correct Key

K3N6 1154 6 hours, No result 19.1s, Correct Key

K3N7 1243 6 hours, No result 25.32s, Correct Key

K3N8 1393 6 hours, No result 29.24s, Correct Key

K4N2 639 195s, Correct Key 3.12s, Correct Key

K4N3 810 3178s, Correct Key 5.47s, UNSAT

K4N4 1049 6 hours, No result 7.22s, Correct Key

K4N5 1316 6 hours, No result 21.28s, Correct Key

K4N6 1468 6 hours, No result 20.59s, Correct Key

K4N7 1647 6 hours, No result 29.66s, Correct Key

K4N8 1849 6 hours, No result 31.93s, Correct Key

K5N2 815 6 hours, No result 5.68s, Correct Key

K5N3 1066 6 hours, No result 7.9s, Correct Key

K5N4 1477 6 hours, No result 17.18s, Correct Key

K5N5 1741 6 hours, No result 39.91s, Correct Key

K5N6 2012 6 hours, No result 35.57s, Correct Key

K5N7 2271 6 hours, No result 56.24s, Correct Key

K5N8 2573 6 hours, No result 74.89s, Correct Key

K6N2 1125 6 hours, No result 6.69s, Correct Key

K6N3 1518 6 hours, No result 13.29s, Correct Key

K6N4 2089 6 hours, No result 2.12s, Correct Key

K6N5 2694 6 hours, No result 32.193s, Correct Key

K6N6 2928 6 hours, No result 60.52s, Correct Key

K6N7 3347 6 hours, No result 73.47s, Correct Key

K6N8 3989 6 hours, No result 492.3s, Correct Key



approach than IcySAT when applied to circuits obfuscated with

eFPGA-based redaction.

However, CycSAT is not without its flaws. The weakness of

CycSAT lies in its inability to break hard cycles [16]. Hard cycles

consist of oscillating and stateful cycles that would be missed in

the acyclic condition generation of the CycSAT attack. Oscillating

cycles do just as their name implies, and the signal of the cycle

constantly oscillates between “0” and “1”. Unbroken oscillating

cycles may cause the SAT algorithm to return incorrect key values,

as these cycles are unable to be simulated by the SAT solver. Stateful

cycles may have different states and therefore can be satisfied by

different values. The existence of stateful cycles cause the SAT

solver to enter an infinite loop, continuously applying a wrong key

without pruning incorrect values. CycSAT was able to decrypt the

benchmarks because they lacked hard cycles. However it cannot

break hard cycles from the circuit no matter what topological order

it takes [16]. On the other hand, unrolling has the capability of

modifying the cycles in the circuit, converting hard cycles to simple

combinational cycles and renewing the viability of the SAT-based

approach against this defense.

So far, it has been established that CycSAT is overall more ef-

ficient than IcySAT yet has a kryptonite of hard cycles. IcySAT

is less efficient than CycSAT, but is able to handle hard cycles by

unrolling. So, why not have the best of both worlds? In Section

4, by combining cycle breaking and cycle unrolling, we propose a

novel attack which is able to recover the bitstream of eFPGA-based

redaction schemes even with the existence of hard cycles and large

size keys.

4 ATTACK ON FPGA-BASED REDACTION

In this section, after looking at the hard cycles that can prevent

existing cyclic attacks from succeeding, we first present an initial

but not necessarily feasible attack that excludes problematic DIPs to

tackle the hard cycle problem. Then, combining cycle breaking and

unrolling, we propose an efficient attack for finding the bitstream

of eFPGA-based redaction schemes even with the existence of hard

cycles and large key sizes. Finally, we discuss the suggested attacks’

time complexity.

4.1 Hard Cycles

The original circuit depicted in Figure 1a has been obfuscated with

different feedback signals as shown in Figure 1b. Each feedback

in this example contains an additional key bit controlled gate to

allow non-cyclic behavior when the correct key is applied. If the

target gate is an and/nand gate, an or key bit controlled gate is

embedded; here the correct value of the associated key bit is “1”. If

the target gate is an or/nor gate, an and key bit controlled gate is

added with the correct value of “0”.

The feedbacks in Figure 1b are combined in such a way that

any topological order chosen by CycSAT [40] will result in a cycle

being missed. In other words, the inclusion of “hard cycles” char-

acterizes this type of obfuscation. When CycSAT is performed on

this obfuscated circuit, it results in an infinite solver loop. This is

because the edges in a directed graph cannot always be separated

into two disjoint sets, such that each simple cycle is generated by

two simple pathways, one made up of edges from each set [57].
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Figure 1: (a) Original circuit (b) Obfuscated circuit with hard

cycles (c) Obfuscated circuit with one cycle being unrolled
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Figure 2: (a) Directed graph of Figure 1b with the topological

order {a, b, c, d} (b) Cycle {b, d, b} can be broken (c) Cycle {a, c,

a} can be broken (d) Cycle {b, d, c, b} cannot be broken

As a result, no matter what topological order the CycSAT attack

employs, certain structural cycles may be overlooked that result in

a stateful situation.

Despite the existing of hard cycles, the obfuscated circuit in

Figure 1b could be easily deobfuscated by IcySAT [41] since it

is a simple example for cycle unrolling. However, IcySAT alone

would take exponential time to solve similar examples with larger

Conjunctive Normal Form (CNF) sizes.

The graph representation of the obfuscated circuit of Figure 1b is

shown in Figure 2a. In this graph, regardless of the traversal order

used, at least one of the cycles will be missed in generating the

acyclic condition of CycSAT. For example, if the topological order is

{a, b, c, d}, CycSAT may break the cycles {b, d, b} and {a, c, a} shown

in Figures 2b and c respectively, but not the cycle {b, d, c, b} shown

in Figure 2d.

4.2 DIP Exclusion Attack

As mentioned in Section 4.1, the weakness of CycSAT [40] comes

from non-combinational hard cycles in the circuit. In our first at-

tacking attempt, we propose to record the DIPs that the attack

got stuck on and exclude them from the eFPGA-based redaction

benchmarks. The way this can be achieved is by connecting all pri-

mary inputs to a nand gate for each input pattern to be excluded.



Algorithm 1: DIP exclusion attack

Input: Obfuscated circuit 𝑔(𝑥, 𝑘) and original function 𝑓 (𝑥)
Output: Key vector 𝑘∗ such that 𝑔(𝑥, 𝑘∗) ≡ 𝑓 (𝑥)
𝑊 ← 𝑆𝑒𝑎𝑟𝑐ℎ𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 (𝑔(𝑥, 𝑘));
// 𝑊 ← {𝑤0, 𝑤1, ..., 𝑤𝑚 }

for all𝑤𝑖 ∈𝑊 do

𝐹 (𝑤𝑖 ,𝑤
′
𝑖 ) ← 𝑁𝑜_𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙_𝑃𝑎𝑡ℎ(𝑤𝑖 );

𝑁𝐶 (𝑘) ← ∧𝑚𝑖=0 𝐹 (𝑤𝑖 ,𝑤
′
𝑖 );

𝑔(𝑥, 𝑘) ← 𝑔(𝑥, 𝑘) ∧ 𝑁𝐶 (𝑘);

𝐷𝐼𝑃𝑠𝑒𝑡 ← {} ;

while 𝑥 ←SAT(𝑔(𝑥, 𝑘1) ≠ 𝑔(𝑥, 𝑘2)) do
if 𝐿𝑜𝑜𝑝𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 (𝑥, 𝐷𝐼𝑃𝑠𝑒𝑡 ) then

𝑔(𝑥, 𝑘1) ← 𝐸𝑥𝑐𝑙𝑢𝑑𝑒 (𝑥, 𝑔(𝑥, 𝑘1));

𝑔(𝑥, 𝑘2) ← 𝐸𝑥𝑐𝑙𝑢𝑑𝑒 (𝑥, 𝑔(𝑥, 𝑘2));

else

𝑔(𝑥, 𝑘1) ← 𝑔(𝑥, 𝑘1) ∧ (𝑔(𝑥, 𝑘1) = 𝑓 (𝑥));

𝑔(𝑥, 𝑘2) ← 𝑔(𝑥, 𝑘2) ∧ (𝑔(𝑥, 𝑘2) = 𝑓 (𝑥));

𝐴𝑑𝑑 (𝑥, 𝐷𝐼𝑃𝑠𝑒𝑡 );
// DIPs are kept in 𝐷𝐼𝑃𝑠𝑒𝑡

Return 𝑘∗ ← 𝑆𝐴𝑇 (𝑔(𝑥, 𝑘1));

Algorithm 2: Break & Unroll attack

Input: Obfuscated circuit 𝑔(𝑥, 𝑘) and original function 𝑓 (𝑥)
Output: Key vector 𝑘∗ such that 𝑔(𝑥, 𝑘∗) ≡ 𝑓 (𝑥)
while (𝑇𝑟𝑢𝑒) do

𝑊 ← 𝑆𝑒𝑎𝑟𝑐ℎ𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑆𝑖𝑔𝑛𝑎𝑙𝑠 (𝑔(𝑥, 𝑘));
// 𝑊 ← {𝑤0, 𝑤1, ..., 𝑤𝑚 }

for all𝑤𝑖 ∈𝑊 do

𝐹 (𝑤𝑖 ,𝑤
′
𝑖 ) ← 𝐵𝑟𝑒𝑎𝑘𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 (𝑤𝑖 );

𝑁𝑜𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑁𝐹 (𝑘) ← ∧𝑚𝑖=0 𝐹 (𝑤𝑖 ,𝑤
′
𝑖 );

// 𝑁𝑜𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑁𝐹 (𝑘) ← 𝐵𝑟𝑒𝑎𝑘𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 (𝑤0)∧...∧𝐵𝑟𝑒𝑎𝑘𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 (𝑤𝑚 )

𝑔(𝑥, 𝑘) ← 𝑔(𝑥, 𝑘) ∧ 𝑁𝑜𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑁𝐹 (𝑘);

𝐷𝐼𝑃𝑠𝑒𝑡 ← {} ;

while 𝑥 ←SAT(𝑔(𝑥, 𝑘1) ≠ 𝑔(𝑥, 𝑘2)) do
if 𝐿𝑜𝑜𝑝𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 (𝑥, 𝐷𝐼𝑃𝑠𝑒𝑡 ) then

𝑤 ← Select a feedback signal from𝑊 set;

𝑔(𝑥, 𝑘) ← 𝑁𝑒𝑤𝐶𝑖𝑟𝑐𝑢𝑖𝑡 (𝑤,𝑔(𝑥, 𝑘));

Break;

𝑔(𝑥, 𝑘1) ← 𝑔(𝑥, 𝑘1) ∧ (𝑔(𝑥, 𝑘1) = 𝑓 (𝑥));

𝑔(𝑥, 𝑘2) ← 𝑔(𝑥, 𝑘2) ∧ (𝑔(𝑥, 𝑘2) = 𝑓 (𝑥));

𝐴𝑑𝑑 (𝑥, 𝐷𝐼𝑃𝑠𝑒𝑡 );
// DIPs are kept in 𝐷𝐼𝑃𝑠𝑒𝑡

if !SAT(𝑔(𝑥, 𝑘1) ≠ 𝑔(𝑥, 𝑘2)) then
Return 𝑘∗ ← 𝑆𝐴𝑇 (𝑔(𝑥, 𝑘1));

Consider a certain bit 𝐵 of the input pattern which we want to

exclude. If 𝐵 = 0, the corresponding input line to the nand gate

must be inverted. If 𝐵 = 1, the input line may be fed directly to the

nand. Using this method, the output of this gate will be “0” only

when the primary inputs equal the excluded DIP, and “1” for all the

other input patterns. Next, an and gate is added for every primary

output. The inputs of this and gate will be the original output line

and the output of each exclusionary nand gate. Thus, the excluded

input pattern will make every output of the obfuscated netlist “0”

regardless of the key value; in this case, the SAT solver will not

consider this input pattern as a DIP and avoid entering an infinite

loop. Algorithm 1 depicts the DIP Exclusion attack.

4.3 Break & Unroll Attack

The overall flow of the proposed Break & Unroll attack has been

illustrated in Algorithm 2. This algorithm includes two main stages;

first, breaking cycles, and second, unrolling the remaining cycles

one by one. If the attack in the first step is successful and the correct

key is displayed, this indicates the absence of the hard cycles in

the circuit. Consequently, breaking the circuit cycles can thwart

the cyclic obfuscation scheme. But if the attack fails to reveal the

correct key by performing the first part of the algorithm and enters

the infinite loop, then the existence of hard cycles has become a

problem. To solve this, the attack exploits its second strategy, which

is unrolling. By executing this phase, the inhibitory effect of the

hard cycles would be neutralized. The details of both parts of the

Break & Unroll attack will be discussed as follows.

4.3.1 Breaking Phase. Based on a primary topological order, a

structural acyclic constraint has been constructed and added to the

obfuscated circuit. First, all existing feedbacks of the circuit have

been searched and kept in a set called𝑊 . In the next step, all cycles

will be broken one by one and then, all the broken feedback signals

will be accumulated as one CNF. This non-cyclic condition will be

added as a new constraint to the obfuscated circuit.

Then, a new obfuscated circuit would be introduced with the

hope of being without structural cycles. After adding this constraint,

the original SAT solver will run this new version of the circuit. In

regards to the discussion in section 4.1 on the consequences of

missing a cycle, the SAT solver may get stuck in an infinite loop.

The LoopDetected function recognizes whether running the first

part of the Break & Unroll algorithm ends in the infinite loop or not.

In this function, the new DIP will be compared with all members

of a set that keeps all DIPs from prior iterations. If it does not

belong to this set, it demonstrates that the breaking phase operated

properly and will reveal the correct key in the next step. But if the

function can find the new generated DIP in the set, it shows that

the SAT-solver will go into an infinite loop. So, we need to address

this issue in the second phase.

4.3.2 Unrolling Phase. The second part of the algorithm tries to

conquer the breaking phase weakness by unrolling a single cycle

at a time. Unrolling the current cycle will be accomplished by the

NewCircuit function.

The process for unrolling the circuit is as follows: First, a single

feedback is chosen. Next, a copy of every gate is added to the circuit.

Considering the cyclic circuit in Figure 1b and the unrolled version

of this same circuit in Figure 1c, the following feedback wires exist:

a→ d, b→ d, c→ a, and c→ b.

The feedback is then broken and a non-controlling value substi-

tutes with the fanout of this wire (i.e., gate a1 in Figure 1c) to enable

other signals to pass through the circuit. As a reminder, a logic “1”

is a non-controlling value for and and nand gates, whereas a logic
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Figure 3: Attacks on eFPGA-based redaction schemes

“0” is a non-controlling value for or and nor gates. The feedback’s

fan-in (i.e., gate c1 in Figure 1c) is linked to the next copy of the

gate to which it was previously attached. In Figure 1c, the wire

from c1 was originally connected to a1, but this wire is detached

and connected to a2 instead. The circuit is successfully unrolled for

one iteration after these steps are completed.

After unrolling one cycle, a new version of the obfuscated circuit

will be replaced with the previous circuit. The NewCircuit function

will construct a new version of the circuit with regard to the previ-

ously selected feedback. Since more unrollings may be required, it

is critical to update the feedback list so that it will not choose to un-

roll a previously unrolled feedback in the next round. Furthermore,

we might find that some new feedback is added to the circuit after

performing the unrolling phase. Therefore, set𝑊 must be updated

each time in the body of the attack algorithm.

4.4 Time Complexity Discussion

If an exponential number of DIPs lead to a stateful situation, the

worst-case time complexity of the DIP Exclusion attack will be

exponential since at each iteration, we can only remove one of the

problematic DIPs. On the other hand, the Break & Unroll attack has

the same best-case scenario in comparison with CycSAT while its

worst-case scenario is comparable to IcySAT. In any scenario where

CycSAT is able to return the correct key, Break & Unroll has the

same run-time. Alternatively, in cases where CycSAT returns an

infinite loop, Break & Unroll is able to return the correct key with a

much better average run-time than IcySAT.

Our unrolling technique is designed to reduce the time needed

for each iteration. The completion time for unrolling is significantly

decreased by choosing one cycle at a time and by creating only

one additional copy of the circuit for each unroll. However, Break

& Unroll may end in the exponential growth of the circuit and

consequently exponential time response equivalent to IcySAT. This

is possible in cases where every cycle in the circuit must be unrolled.

Figure 3 shows a visual summary of the attacks on eFPGA-based

redaction schemes.

5 EXPERIMENTAL RESULTS

To launch the attack, we used eFPGA-based redaction benchmarks

in [5] with 3 and 4 input sizes of LUTs and different numbers of

basic logic elements in a CLB. Then we added key-controlled hard

cycles in two different ways. For half of the chosen benchmarks,

we inserted a fixed number of 10 hard cycles into the whole circuit,

and for the second half, we added the hard cycles compatible with

the key size, i.e., the number of added hard cycles is one-tenth of

the key size of each benchmark. Each hard cycle embeds four extra

key bit controlled feedbacks into the circuit. All attacks are run in

Ubuntu with 8GB of RAM. The results are shown in Table 2.

CycSAT gets stuck in an infinite loop for almost all of the bench-

marks and cannot return any keys due to the existence of stateful

hard cycles. On the other hand, IcySAT is still able to retrieve the

correct key for smaller sized benchmarks, while for the rest of the

benchmarks, after 6 hours, no result was reported. The benchmarks

with hard cycles take more time to be attacked by IcySAT in com-

parison with the original benchmarks with no hard cycles due to

the increased circuit complexity. IcySAT cannot return the correct

key for the majority of the benchmarks because it tries to unroll all

the cycles of the circuit, and unrolling all the cycles results in the

exponential growth of the CNF size of the obfuscated circuit and

thus a high response time for the solver.

For the DIP exclusion attack, as the number of hard cycles in-

creases, the probability ofmore DIPs getting stuck in a loop becomes

higher. Thus, the attack needs to exclude more DIPs. The DIP exclu-

sion attack returns the key for the majority of the benchmarks with

a fixed number of 10 hard cycles, but for the ones with a higher

number of hard cycles, no results were received after 6 hours of



Table 2: Attacks on eFPGA-based redaction schemes with hard cycles

Bench Key Size Hard Cycles CycSAT [40] IcySAT [41] DIP Exclusion (New) Break & Unroll (New)

K3N2 641 10 Inf Loop 697s, Correct Key 1236.57s , Correct Key 9.46s, Correct Key

K3N3 765 10 Inf Loop 1817s, Correct Key 2163.11s , Correct Key 16.38s, Correct Key

K3N4 877 10 Inf Loop 5506s, Correct Key 5621.3s , Correct Key 41.81s , Correct Key

K3N5 981 10 Inf Loop 6 hours, No Result 7011.37s , Correct Key 36.42s , Correct Key

K3N6 1194 10 Inf Loop 6 hours, No Result 6 hours, No Result 141.34s , Correct Key

K3N7 1283 10 Inf Loop 6 hours, No Result 24011.02s, Correct Key 205.09s , Correct Key

K3N8 1433 10 Inf Loop 6 hours, No Result 6 hours, No Result 410.7s, Correct Key

K4N2 895 64 Inf Loop 1072s, Correct Key 6 hours, No Result 20.93s , Correct Key

K4N3 1134 81 UNSAT 26695s, Correct Key 6 hours, No Result 182.15s, UNSAT

K4N4 1469 105 Inf Loop 6 hours, No Result 6 hours, No Result 194.6s, Correct Key

K4N5 1844 132 Inf Loop 6 hours, No Result 6 hours, No Result 806.14s, Correct Key

K4N6 2056 147 Inf Loop 6 hours, No Result 6 hours, No Result 1519.89s, Correct Key

K4N7 2307 165 Inf Loop 6 hours, No Result 6 hours, No Result 1602.52s, Correct Key

K4N8 2589 185 Inf Loop 6 hours, No Result 6 hours, No Result 6 hours, No Result

running the attack due to the brute-force nature of excluding DIPs

one by one.

On the other hand, the Break & Unroll attack is able to retrieve

all correct keys except for two benchmarks. For 𝐾4𝑁3, Break &

Unroll the same as CycSAT, reports UNSAT . We could not find the

real reason here, but we suspect that both CycSAT and Break &

Unroll are breaking a cycle that should not be broken, maybe due

to the existing combinational loop in the original benchmark.

Overall, based on the attacking results of Table 2, the superiority

of the Break & Unroll attack is apparent. However, it appears that

when a large number of hard cycles are embedded in the circuit (as

in the 𝐾4𝑁 8 benchmark), even the Break & Unroll attack may take

a long time to report the correct key. This is because, in the case of

many hard cycles, the algorithm requires many unrollings that may

degrade the performance of Break & Unroll due to the growth of the

CNF size. This suggests the necessity of systematically inserting

an exponential number of hard cycles into eFPGA-based redaction

methods. However, this is not an easy task to carry out without

significant overhead to the original eFPGA fabrics.

6 CONCLUSION & TAKEAWAYS

The primary goal of logic obfuscation is to protect a precious design

from being pirated and overproduced. If we replace large parts of

the design with an eFPGA, we cannot guarantee the same perfor-

mance as the original design. So, eFPGA-based redaction is only

meaningful when a small-sized sub-circuit is replaced with an eF-

PGA. In this case, as shown by our preliminary study, the bitstream

of the eFPGA (i.e., the correct key) can be revealed by cyclic attacks

like CycSAT [40] and IcySAT [41] if the attacker has access to an

oracle (i.e., an activated IC bought from the market) and the obfus-

cated netlist leaked from an untrusted foundry.

Takeaway 1: The common perception that eFPGA-based

redaction is by default secure against oracle-guided attacks

is prejudice.

Thus, provisions to insert hard cycles (against CycSAT) and large-

size keys (against IcySAT) are required. However, even with these

provisions, eFPGA-based redaction can be challenged by our pro-

posed attacks: DIP Exclusion attack that excludes problematic DIPs

form the CycSAT algorithm to tackle the hard cycle problem, and

Break & Unroll attack that combines cycle breaking and unrolling

to find the bitstream of eFPGA-based redaction schemes even with

the existence of hard cycles and large key sizes.

Takeaway 2: Additional research on how to systematically

create an exponential number of non-combinational hard

cycles is required to produce secure eFPGA-based redaction

schemes.

In the future, the Break & Unroll attack could be extended to

accept an unrolling factor as user input to select the number of

unrollings each time a DIP becomes stuck in a loop.
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